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1. Build a next generation 
ultracold neutron source at 
TRIUMF using a spallation 
neutron source and 
superfluid helium 
conversion 

2. Measure the neutron 
electric dipole moment with 
an order of magnitude 
improved sensitivity 

 
 

TRIUMF UltraCold Advanced Neutron Collaboration 

Sean Vanbergen 

TUCAN Goals 
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• Helps explain matter-antimatter 
asymmetry (Sakharov conditions) 

• Under time reversal, μn is reversed, but 
dn is not. 

• T violation => CP violation under CPT 
symmetry 
 
 
 

 
• Beyond standard model ~10-27 ecm 
• Standard model <10-30 ecm 
• Current limit 1.1x10-26 ecm [arXiv:2001.11966] 

• TUCAN target ~10-27 ecm 
 
 

• The neutron consists of electrically 
charged quarks 

• The quarks give the neutron a non-zero 
magnetic dipole moment μn 

• A separation of the neutron’s centres of 
positive and negative charge would give 
an electric dipole moment dn 

Neutron Electric Dipole Moment 

Sean Vanbergen 



Measuring the nEDM: Ultracold Neutrons 
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• Current experiments use confined 
neutrons 

• UltraCold Neutrons (UCN) have kinetic 
energies <300 neV 

• This corresponds to a de Broglie 
wavelength of ~50 nm 

• UCN therefore see solids as a constant 
Fermi potential rather than as individual 
atoms 

• Materials with sufficiently large potentials 
can be used to confine neutrons 

• Energy from both gravitational and 
magnetic fields are also significant 
 

 



UCN Production at TRIUMF 

• TRIUMF main cyclotron provides 480MeV 
protons to a tungsten spallation target 

• Neutrons are moderated in layers of warm 
and frozen heavy water 

• A superfluid helium cryostat cools isotopically 
pure helium-4 to ~1K 

• Remaining neutron energy is transferred to 
the superfluid helium through a phonon 
emission process 

• Operation of the UCN source produces a lot 
of radiation, so it needs to be buried behind 
several meters of concrete shielding 

• UCN must be transported out of the shielding 
to experiments 
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Target 
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Transporting Neutrons: UCN Guides 
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• UCN are “transported” by 
propagating down guides (pipes 
of suitable material) 

• The transmission through a 
guide is determined by two 
properties: 

1. Loss of neutrons at the 
guide walls (~10-4 loss per 
bounce), represented as 
an imaginary component of 
the Fermi potential W 

2. Diffuse reflection at the 
guide walls (instead of 
specular reflection), with 
some probability PL, which 
deflects the neutrons 
backwards 
 
 
 
 

𝑊𝑊 =  � 𝑛𝑛𝑖𝑖 𝜎𝜎𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜎𝜎𝑖𝑖,𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣 

Inelastic Scattering Absorption 
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guide walls (~10-4 loss per 
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Diffuse Reflection Specular Reflection 

𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑓𝑓 

𝑃𝑃(𝜃𝜃𝑓𝑓) ∝ cos (𝜃𝜃𝑓𝑓) 



Aside: UCN Storage Lifetime 

• UCN stored in a volume are lost over 
time. 

• Roughly exponential with lifetime τ: 
𝑁𝑁 𝑡𝑡 = 𝑁𝑁0𝑒𝑒−𝑠𝑠/𝜏𝜏 

• The lifetime is the combined neutron 
decay and wall loss lifetime from W 

1
𝜏𝜏

=
1

𝜏𝜏𝑊𝑊
+

1
𝜏𝜏𝛽𝛽

 

𝜏𝜏𝑊𝑊 ≪ 𝜏𝜏𝛽𝛽 

• Dominated by W, low sensitivity to PL 

• Important because: 

1. We have two parameters, W and PL, 
so we need two measurements to fit 
them accurately 

2. Lifetime affects other measurement 
techniques 
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Measuring Neutron Transmission 

10 Sean Vanbergen 

• Could we not simply do this? 

 

 

 

 

 

 

• Measure of transmission is: 

𝑇𝑇 =
#UCN detected with guide

#UCN detected without guide
 

• Problem is that we cannot confirm that the number of UCN delivered is always the same 

• The TUCAN source uses a spallation neutron source, which has relatively low stability (compared to a reactor 
neutron source), due to fluctuating beam currents, temperatures, etc. 

• Solution: use a secondary normalization detector to measure (proportionally) how many neutrons produced 

Guide of Interest 



Normalization Detector 
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Normalization  
Detector (3He) 

Valves 

Guide(s) of Interest 

Main 
Detector (6Li) 

Pinhole  
T-Section Source 



Normalization Detector: When to Count? 
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𝑇𝑇 =
𝑁𝑁𝐿𝐿𝑖𝑖

𝑁𝑁𝐻𝐻𝑠𝑠
=

#UCN detected in main detector
#UCN detected in normalization detector

 

𝑵𝑵𝑯𝑯𝑯𝑯 is counted at the same time as 𝑵𝑵𝑳𝑳𝑳𝑳 
 
• Problem: most UCN go to the main 

detector, so we get low counts in the 
normalization detector 

• Assuming 𝑁𝑁 statistics, uncertainty in T is: 
𝜎𝜎𝑇𝑇

𝑇𝑇
=

1
𝑁𝑁𝐿𝐿𝑖𝑖

+
1

𝑁𝑁𝐻𝐻𝑠𝑠
 

• The lowest count dominates the uncertainty 
 
 

𝑵𝑵𝑯𝑯𝑯𝑯 is counted during UCN production 
 
• Gives much higher 3He counts 
• Problem: because the detector is 

“connected” to the source during this 
period, these counts are very sensitive to 
the source conditions 

• This turns out to introduce some significant 
systematics 

• Measurements stop being replicable 
 
 



Transmission Measurement with Prestorage 
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Production Prestorage Transmission Phase 

Timing 𝑡𝑡𝑖𝑖 𝑡𝑡𝑝𝑝 𝑡𝑡𝑠𝑠 

1. Produce UCN and fill 
volume up to here 



Transmission Measurement with Prestorage 
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Production Prestorage Transmission Phase 

Timing 𝑡𝑡𝑖𝑖 𝑡𝑡𝑝𝑝 𝑡𝑡𝑠𝑠 

2. Close upstream valve and store 
UCN in central volume. Count UCN 
in 3He. 



Transmission Measurement with Prestorage 
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Production Prestorage Transmission Phase 

Timing 𝑡𝑡𝑖𝑖 𝑡𝑡𝑝𝑝 𝑡𝑡𝑠𝑠 

3. Open valves to guide 
and detector, count 
UCN in 6Li detector 



Prestorage Transmission Measurement: 2019 Results 

16 Sean Vanbergen 

• Measured a number of different 
guides in November 

• Different materials 
• Different surface 

preparation 
• 85mm and 95mm diameter 

 
• Repeated measurements 

showed that the prestorage 
method gives consistent results 
 

• How do we go from these 
numbers to W and PL? 



Finding W and PL Using T: Simulations 
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• PENTrack: Monte Carlo 
simulations for UCN 

• Fully implemented as-built 
geometry to simulate each 
experiment exactly as it was 
performed 

• Fit parameters to match the 
experimental results 
(transmission and storage 
lifetime measurements) 

• Using the Compute Canada 
clusters to simulate many 
millions of neutrons over 24 
measurements (+39 
measurements from 2018) 
 



Simulation Results 
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• Fitting one experiment is easy, but a 
simultaneous fit of everything is hard 

• Success in modelling lifetime → good 
determination of W 
 
 
 
 

• Ongoing challenge with transmissions 
• Mysterious factor of 2 difference… could 

be an unaccounted-for systematic effect 
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Summary 

 
 

• Achieving high statistics in UCN experiments requires the study of guide properties 
 

• At TRIUMF we have developed techniques for measuring transmission through a 
guide with good accuracy and precision 
 

• We can use simulations to take our experimental results to quantitative guide 
properties 
 

• But such simulations can be quite challenging, and potentially reveal problems of 
which we are not otherwise aware 
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Thank you! 
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Backup Slides 



Systematics in the Irradiation Period Measurement 
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• Define the detection rate in the 3He detector 
as 𝑟𝑟𝐻𝐻𝑠𝑠 . 

• The counts in the detector at a time 𝑡𝑡𝑖𝑖 are 
given by the integral: 

𝑁𝑁𝐻𝐻𝑠𝑠(𝑡𝑡𝑖𝑖) = � 𝑟𝑟𝐻𝐻𝑠𝑠 𝑡𝑡 𝑑𝑑𝑡𝑡
𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖−∆𝑠𝑠
 

• Where ∆𝑡𝑡 defines the period over which we 
are integrating. 

• The rate is proportional to the number of UCN 
in the source, which we can model as a 
saturating exponential defined by the source 
storage lifetime 𝜏𝜏. 

 
𝑟𝑟𝐻𝐻𝑠𝑠 𝑡𝑡 ∝ 𝑁𝑁𝑎𝑎𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑁𝑁0 1 − 𝑒𝑒−𝑠𝑠/𝜏𝜏  

 
 
 
 
 

 
 
 
 

• Then, the proportionality constant between 
the rate and the UCN in the source is: 

 
𝑁𝑁𝐻𝐻𝑠𝑠(𝑡𝑡𝑖𝑖)
𝑁𝑁𝑎𝑎𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖)

=
∫ 1 − 𝑒𝑒−𝑠𝑠/𝜏𝜏 𝑑𝑑𝑡𝑡𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖−∆𝑠𝑠

1 − 𝑒𝑒−𝑠𝑠𝑖𝑖/𝜏𝜏  

 
• If τ changes, this proportionality changes. 

This is worse if window ∆𝑡𝑡 is large. 
• Can introduce big systematic differences 

between measurements of different 
guides. 

• Unfortunately τ does change – the 
superfluid helium in the source introduces 
a big temperature dependence, and the 
source conditions can be very dynamic. 

 



Prestorage Volume Lifetime Sensitivity 
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• The prestorage counting is 
sensitive to the prestorage 
volume lifetime. 

• The adjustment is: 
𝑁𝑁𝐿𝐿𝑖𝑖

𝑁𝑁𝐻𝐻𝑠𝑠
= 𝑇𝑇𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠

𝑒𝑒−𝑠𝑠𝑝𝑝/𝜏𝜏𝑝𝑝

𝜏𝜏𝑝𝑝 1 − 𝑒𝑒−𝑠𝑠𝑝𝑝/𝜏𝜏𝑝𝑝
  

• In theory, 𝜏𝜏𝑝𝑝 should be 
constant between 
measurements 

• In practice it fluctuated by a 
small amount (16.2s to 17.2s) 

• We can measure 𝜏𝜏𝑝𝑝 from the 
3He detector rates, since the 
rate is proportional to the 
number of UCN available. 



Prestorage Transmission Measurement: Optimization 
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• Optimize the production time 
and prestorage time to give 
minimal uncertainty 

𝜎𝜎𝑇𝑇

𝑇𝑇
=

1
𝑁𝑁𝐿𝐿𝑖𝑖

+
1

𝑁𝑁𝐻𝐻𝑠𝑠
 

• Carried out optimization 
measurements on an expected 
“typical” guide 

• At long prestorage time, 6Li 
become low, at short 
prestorage time, 3He become 
low 

• The sweet spot is around where 
the counts are equal 
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