Searching for Majorana Neutrinos with nEXO

Christopher Chambers

on behalf of the nEXO Collaboration

McGill University

Lake Louise Winter Institute Feb 12, 2020

Neutrinos

- Fundamental particles
- Neutral
- Weakly Interacting
- Small Mass (< 1 eV)
- Common

Open Questions:

- Are neutrinos their own anti-particle?
- What are the neutrino masses?
- Can neutrinos violate lepton # conservation?

Standard Model of Elementary Particles

Double Beta Decay

- Second-order weak nuclear process
- Observable when first-order beta decay is forbidden
- 35 2vββ nuclei have been found
 - ¹³⁶Xe EXO-200, nEXO, NEXT, KL-Z
 - ⁷⁶Ge Legend, GERDA, MJD
 - ¹³⁰Te CUORE, SNO+

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

Proposed by: Ettore Majorana

 $\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left[M^{0\nu}\right]^2 \left< m_{\nu} \right>^2$

 $T_{1/2}^{0v}$ is the measured $0v\beta\beta$ half-life G^{0v} is a phase space factor $M^{O_{v}}$ is the nuclear matrix element

Effective Majorana mass: $\langle m_{\nu} \rangle = \left| \sum U_{ei}^2 m_i \mathcal{E}_i \right|$ (light neutrino exchange mechanism only)

Double Beta Decay

- Second-order weak nuclear process
- Observable when first-order beta decay is forbidden
- 35 2vββ nuclei have been found
 - ¹³⁶Xe EXO-200, nEXO, NEXT, KL-Z
 - ⁷⁶Ge Legend, GERDA, MJD
 - ¹³⁰Te CUORE, SNO+

 $2\nu\beta\beta$

Proposed by: Ettore Majorana

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

Open Questions:

- Are neutrinos their own anti-particle?
- What are the neutrino masses?
- Can neutrinos violate lepton # conservation?

Lepton # conservation violation is an important requirement for many theories that seek to explain the matter-antimatter asymmetry of the universe

Detecting Neutrinoless Double Beta Decay (0vββ)

Searching for $0\nu\beta\beta$ in ^{136}Xe

- Easy to enrich: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- Can be purified continuously, and reused
- High Q_{ββ} (2458 keV): higher than most naturally occurring backgrounds
- Minimal cosmogenic activation: no long-life radioactive isotopes
- Energy resolution: improves using scintillation and charge anti-correlation
- LXe self shielding
- Background can be potentially reduced by Ba⁺⁺ tagging

1. EXO-200: ~175kg liquid-Xe TPC, finished 2018

2. **nEXO**: future 5-tonne liquid Xe TPC with Ba tagging upgrade option (SNOLAB cryopit)

nEX

Charge and Light Detection in nEXO

Test of Charge Tiles with ²⁰⁷Bi Source

Metal strips deposited on low-BG dielectric substrate Interleaved for X, Y position reconstruction Electronics mounted to back of chip Self-supported --> More robust than tensioned wire grid

Photon Detection Efficiency of SiPMs

Relatively low bias requirements (30 - 80 V) High gain (10⁵ - 10⁶) Photon detection efficiency is sufficient Low dark noise (< 50 Hz/mm²)

> A, Jamil, et al. IEEE Trans.Nucl.Sci. 65, 2823 (2018) G. Gallina et al. Nucl. Instrum. Meth., 940, 371 (2019)

JINST 13, P01006 (2018), arXiv 1710.05109

Projected nEXO Sensitivity

J.B. Albert et al. Phys. Rev. C. 97 065503 (June 2018)

Barium Tagging Concept as an upgrade to nEXO

Barium Tagging: identify barium daughter at 0vββ decay site for **complete** background elimination

Outer

cryostat

Vacuum

Inner

cryostat

13.3m

Process Equipment m

Barium Tagging R&D Program for nEXO

- Cryogenic probe with Fluorescence Spectroscopy in Solid Xenon
 - Colorado State University
- Extraction to Gas Phase with Ion Trapping
 - McGill and Carleton Universities and TRIUMF
- Electrically Biased probe with Resonance Ionization Spectroscopy
 - Stanford University
- Electrically Biased probe with Thermal Desorption
 - University of Illinois Urbana-Champaign @ ANL
- Electrically Biased probe with Electron Microscopy
 - Brookhaven National Lab

Barium Tagging in Solid Xenon

- Locate the decay position with the TPC
- Insert a cryogenic probe and trap the Ba decay daughter in solid Xe
- Extract the probe and cool further
- Tag the Ba daughter in the solid Xe via laser induced fluorescence

0 Ba
$$\longrightarrow$$
 Not ββ decay
1 Ba \longrightarrow ββ decay

Fluorescence Images of Individual Ba Atoms in Solid Xe

Ba Extraction and Tagging in Xe Gas

Under Development – Stay Tuned!

University of Alabama, Tuscaloosa AL, USA

M Hughes, P Nakarmi, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland — J-L Vuilleumier University of British Columbia, Vancouver BC, Canada — G Gallina, R Krücken, Y Lan Brookhaven National Laboratory, Upton NY, USA

M Chiu, G Giacomini , V Radeka E Raguzin, S Rescia, T Tsang University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada

I Badhrees, B Chana, D Goeldi, R Gornea, T Koffas, C Vivo-Vilches Colorado School of Mines, Golden CO, USA — K Leach, C Natzke Colorado State University, Fort Collins CO, USA

A Craycraft, D Fairbank, W Fairbank, A Iverson, J Todd, T Wager Drexel University, Philadelphia PA, USA — MJ Dolinski, P Gautam, EV Hansen, M Richman, P Weigel

Duke University, Durham NC, USA — PS Barbeau Friedrich-Alexander-University Erlangen, Nuremberg, Germany

G Anton, J Hößl, T Michel, S Schmidt, M Wagenpfell, W G Wrede, T Ziegler for Underground Physics, Daeleon, South Korea — DS Leonard

IHEP Beijing, People's Republic of China GF Cao, WR Cen, YY Ding, XS Jiang, P Lv, Z Ning, XL Sun, T Tolba, W Wei, U Wen, WH Wu, J Zhao ITEP Moscow, Russia — V Belov, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Echevers, S Li, L Yang Indiana University, Bloomington IN, USA — SJ Daugherty, U Kaufman, G Visser Laurentian University, Sudbury ON, Canada — E Caden, B Cleveland,

A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, M Walent, U Wichoski

Lawrence Livermore National Laboratory, Livermore CA, USA JP Brodsky, M Heffner, A House, S Sangiorgio, T Stiegler University of Massachusetts, Amherst MA, USA

J Bolster, S Feyzbakhsh, KS Kumar, O Njoya, A Pocar, M Tarka, S Thibado McGill University, Montreal QC, Canada

S Al Kharusi, T Brunner, D Chen, L Darroch, Y Ito, K Murray, T Nguyen, T Totev University of North Carolina, Wilmington, USA — T Daniels Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, RJ Newby Pacific Northwest National Laboratory, Richland, WA, USA

IJ Arnquist, ML di Vacri, EW Hoppe, JL Orrell, GS Ortega, CT Overman, R Saldanha, R Tsang Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, A Fucarino, K Odgers, A Tidball Université de Sherbrooke, QC, Canada — SA Charlebois, D Danovitch, H Dautet, R Fontaine, F Nolet, S Parent, J-F Pratte, T Rossignol, N Roy, G St-Hilaire, J Sylvestre, F Vachon SLAC National Accelerator Laboratory, Menlo Park CA, USA — R Conley, A Dragone, G Haller, J Hasi,

U Kaufman, C Kenney, B Mong, A Odian, M Oriunno, A Pena Perez, PC Rowson, J Segal, K Skarpaas VIII

Jniversity of South Dakota, Vermillion SD, USA — T Bhatta, A Larson, R MacLellan

We are looking for new collaborators

Stanford University, Stanford CA, USA

R DeVoe, G Gratta, M Jewell, S Kravitz, BG Lenardo, G Li, M Patel, M Weber Stony Brook University, SUNY, Stony Brook NY, USA — KS Kumar TRIUMF, Vancouver BC, Canada — J Dilling, G Gallina, R Krücken Y Lan, F Retière, M Ward Yale University, New Haven CT, USA — A Jamil, Z Li, DC Moore, Q Xia

Charge Readout

Charge will be collected on arrays of strips fabricated onto low background dielectric wafers

٠

٠

٠

(low radioactivity quartz has been identified)

- Self-supporting/no tension
- Built-on electronics (on back)
- Far fewer cables
- Ultimately more reliable, lower noise, lower activity

18

Photon Detection Efficiency Requirements

To achieve 1% energy resolution, an overall 3% photon detection efficiency is required, consisting of two parts:

- Photon detection efficiency (PDE) of SiPM
 - Determined by filling factor, transmittance, quantum efficiency and trigger efficiency.
 - Can be measured by a standalone setup.
- Photon transport efficiency (PTE)
 - Detector geometry
 - Reflective electrodes in TPC
 - Reflectivity of SiPM

For VUV photons, more than 50% will be reflected on SiPM surface, assuming Si-SiO₂ interface.

Analog SiPMs - baseline solution for nEXO

- High gain (low noise)
- Large manufacturing capabilities
- But efficiency and radioactivity need work

nEXO key parameters (1805.11142):

Parameter	Value
Total instrumented area	$\simeq 4.5 \text{ m}^2$
Overall light detection efficiency	$\epsilon_o > 3 \%$
SiPM PDE (175 nm, normal incidence)	$\epsilon_{PD} > 15 \%$
Overvoltage	$> 3 \mathrm{V}$
Dark noise rate	$< 50 \mathrm{Hz}/\mathrm{mm}^2$
Correlated avalanche rate	< 0.2

Thomas Brunner

20

PDE Measurements

A, Jamil, et al. IEEE Trans.Nucl.Sci. 65, 2823 (2018)G. Gallina et al. Nucl. Instrum. Meth., 940, 371 (2019)

- The uncertainty is dominated by quantum efficiency of the reference PMT.
- To achieve 1% energy resolution, the SiPM correlated avalanches (CA) need to be below 20%.
- VUV4 from Hamamatsu has low CA than FBK-VUV-LF, thus can be operated at a higher over-voltage.
- Dark noise rates for both type devices are comfortably below nEXO requirement of < 50Hz/mm².

Analog SiPMs - baseline solution for nEXO

- Integrate SiPMs into 'tiles' (~10 x 10 cm²).
- ASIC chip to read out tile.
- Tiles mounted on 'stave' (~20 x 120 cm²).
- Staves mounted inside LXe behind field cage.

ASIC (ZENON) for SiPM readout under design (BNL)

- System on Chip
- 16 channel
- Peak detection
- Analog to digital conversion
- On-chip LDOs

Prototype SiPM Tile

Conceptual design of the photo detector system underway

Prototype silicon interposer 22

January 30, 2020

Self-shielding in Monolithic Detectors

Energy Levels of Ba in Vacuum

If the electron decays to metastable state it is no longer excited by the laser It "Turns off"

Energy Levels of Ba in Solid Xe

Looking at one Ba Atom

C. Chambers et al. Nature 569, 203–207 (2019)Louise Winter Institute Feb 2020

Even after a large deposit (7000 ions) we remove detectable Ba atoms to a limit of < 0.16% Thus no "history effect" interfering with subsequent deposits