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The Standard Model and Outstanding Problems
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“The more important 
fundamental laws and facts of 
physical science have all been 
discovered” – Michelson in 1903



Matter
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Matter
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Forces
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The Standard Model

• In 2012 Higgs Boson  found! 

• Gravity is not in Standard Model (SM )
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• Finding the Higgs was hard work! Looking needle in haystack!

The Standard Model

events /s

events/s
10 events/min

9



“The more I learn, the more I 
realize how much I don't know” 
– Albert Einstein 
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So What Don’t We Know? Hierarchy Problem

h h

Mass of Higgs in vacuum Quantum Mechanics: Higgs can turn into 
other particles and back. At higher energy, 
these contributions approach infinity!
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Mass of Higgs in vacuum
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So What Don’t We Know? Hierarchy Problem

If no new physics, SM breaks down is the 
gravitational scale: MPlanck ~1018 GeV

Quantum Mechanics: Higgs can turn into 
other particles and back. At higher energy, 
these contributions approach infinity!



68027489174732987197032748931274927856 -

68027489174732987197032748931274912231 

So What Don’t We Know? Hierarchy Problem
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“The Higgs has a snowball’s chance in 
hell of having a mass in that ballpark”



?

• What’s so different about it?

So What Don’t We Know? Dark Matter
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universe as a whole contain far more 
matter than that which is observable via 
electromagnetic signals

Galaxies made of stars (seen by optical telescope) 
and gas+plasma (seen by X-ray telescope)

?

?

• What’s so different about it?

So What Don’t We Know? Dark Matter
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• By looking at gravitational lensing we 
can calculate where most of mass is. 
Not where plasma located!

• It seems dark matter passed right 
through, how did it interact?

universe as a whole contain far more 
matter than that which is observable via 
electromagnetic signals

So What Don’t We Know? Dark Matter
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So What Don’t We Know?

• How does gravity fit with the SM?

• Why do neutrinos have mass?

• Why is there more matter than 
anti-matter?

• What is Dark Energy?

• ……..

• Look for SM deviations by 
measuring SM & Higgs 
properties

• Search for beyond SM theories 
with explanations



“In god we trust, all others must 
bring data” – William Deming?
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• Easy! Just need a time machine and magnifying glass! 

How Do We Get Data?
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The LHC and ATLAS
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Large Hadron Collider 
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• Number of interactions per 
bunch crossing goes up to 70

• Selecting interesting events a 
challenge!

𝟏𝟏 protons per bunch, colliding at 40 MHz (every 25 ns)

Large Hadron Collider 
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• Reached pileup of up to 70

• Selecting interesting events a 
challenge!

𝟏𝟏 protons per bunch, colliding at 40 MHz (every 25 ns)

Number of interactions in each bunch crossing ~ pileup
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Large Hadron Collider 



Large Hadron Collider 

• LHC gives us 40 MHz, but we can only save 1kHz!

• Our interesting physics events are rare!

Find needle in haystack in battlefield! 
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ATLAS Detector

• A big fancy camera!
• ATLAS is a multi purpose 

detector, 46 m in length, 25 m in 
diameter with a weight of 
7 000 tonnes
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ATLAS Detector

• The ATLAS Inner Detector consists of 
Pixel, SCT and TRT in magnetic field ( )

• By knowing strength of and how much 
track curves, can calculate momentum 

• Provides measurement of momentum, 
direction, charge for all charged particles
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ATLAS Detector

• Electromagnetic calorimeter  (Liquid 
Argon) absorbs electrons and photons

• Provides energy measurement  of EM 
showers
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ATLAS Detector

• Quarks hate loneliness, they always 
team up to make hadrons

• Hadronic calorimeter (TileCal) absorbs 
hadrons (protons, neutrons etc.)

• Provides energy measurement of jet 
hadronic showers (jets)

We’re 
glued 
together!
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ATLAS Detector
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• Quarks hate loneliness, they always 
team up to make hadrons

• Hadronic calorimeter (TileCal) absorbs 
hadrons (protons, neutrons etc.)

• Provides energy measurement of jet 
hadronic showers (jets)
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ATLAS Detector

• Muons escape the detector, but leave tracks in the muon 
spectrometers, which are also surrounded by magnetic field



31

ATLAS Detector

• Neutrinos escape the detector, but their presence inferred 
from missing transverse energy 

Before collision sum of momenta in 
transverse plane is 0.  Must be true 
after collision as well 
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ATLAS Detector

• Some particles decay quickly to others and their presence is 
inferred
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ATLAS Detector

• That’s how our camera builds a picture of 
all particles in each event

• But, how does it sort through junk to find 
important events?



• Reduce 40 MHz to 100 kHz in 2.5 µs
• Level 1 (L1) Trigger: electronics on calorimeters and muon detector

ATLAS Detector : Trigger – STEP 1 L1
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• Reduce 100 kHz to 1kHz  in ~ 0.2 s
• Higher Lever Trigger (HLT): software

ATLAS Detector : Trigger – STEP 2 HLT



ATLAS Detector : Trigger – STEP 3 HLT
• Reduce 100 kHz to 1kHz  in ~ 0.2 s
• Higher Lever Trigger (HLT): software



ATLAS Physics 
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Mass Hierarchy solution: SUSY

CERN-EP-2019-263



ATLAS Physics 
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Mass Hierarchy solution: SUSY Dark Matter Candidates

ATL-PHYS-PUB-2019-032

CERN-EP-2019-263



ATLAS Physics 
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Gravitons

CERN-EP-2019-162



ATLAS Physics 
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Higgses

CERN-EP-2019-267

CERN-EP-2019-162

Gravitons

CERN-EP-2019-162



LBNF and DUNE
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“I have done a terrible thing: I 
have postulated a particle that 
cannot be detected.” 
– Wolfgang Pauli
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So What Don’t We Know?

• Why do neutrinos have mass?

• What are the relative masses of 
neutrinos?

• Is there CP violation in the 
neutrino sector? Could it be 
responsible for matter-anti-matter 
asymmetry? 

• Why are the neutrino and quark 
mixing matrix elements so 
different?

• Can we detect neutrinos from 
Supernova events?



Far Detector

Near Detector
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LBNF DUNE Facility 
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• 1-6 GeV muon neutrinos/antineutrinos obtained from high-
power proton beam (1.2 MW)

• Near detector will characterize the beam (100s of millions of 
neutrino interactions) 

• Far Detector is >40 kton Liquid Argon Time Projection 
Chambers (LAr TPC) – fine granularity

Far Detector

Near Detector



beam
direction

measure precisely neutrino fluxes & constrain systematic uncertainty 
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DUNE Near Detector
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Scintillator cubes 
for beam monitor

Gaseous Argon 
TPC: Study 
interactions in detail

Liquid Argon TPC:
Most like Far Datector



4 chambers,  17 kton total mass each
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DUNE Far Detector
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LAr TPC: few mm resolution, 3D imagine 

DUNE Far Detector

Installation of first module in 2024
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DUNE Prototype 



Mass Ordering Sensitivity CP violation Sensitivity

+ Expect thousands of electron 
neutrinos from super nova bursts
+ Sensitivity to possible additional 
neutrinos 

DUNE Physics 
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More manpower is very welcome!
Please contact us to join!

Near Detector Prototype & 
Neutrino Interaction model

Deborah Harris
Dharris@fnal.gov

Nikolina Ilic
Nikolina.Ilic@cern.ch

FELIX readout system & 
Extra neutrino  & NSI searches

Computing, Calibration  
& Supernova neutrinos

Claire David
Claire.David@cern.ch

Planned Canadian Contributions
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• Overview of ATLAS and DUNE experiments presented

• ATLAS is analyzing its full dataset and hopes to 
answer many outstanding questions related to the SM

• With the first DUNE module installation set to begin in 
2024, DUNE hopes to answer many neutrino-related 
questions soon!
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Summary & Outlook
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BACKUP
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• Effect on matter on neutrino oscillations 
complicates some measurements

• Matter does not have same effect on 
neutrino and anti-neutrino oscillations –
complicates CPV measurement

• Possible strategies:

Small oscillations length (~300 km) = 
insignificant matter effects
Off axis beam gives high flux at oscillation 
maximum, narrow energy range

Large oscillations length (~1000 km) = significant 
matter effects 
On axis beam gives wide range of neutrino energy –
differentiate CPV effects from matter effects through 
energy dependence

Neutrinos: Experimental setups
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SM Di-Higgs production several orders of magnitude lower than single Higgs 
production AND destructive interference among diagrams makes it smaller 

BR bb WW

bb 33%

WW 25% 4.6%

7.4% 2.5%

ZZ 3.1% 1.2%

0.26% 0.10%

Di-Higgs production enhanced in many BSM models 

• Non resonant production: Higgs coupling to 
modified wrt SM values

• Resonant production:  Replacing virtual Higgs 
boson with an intermediate heavy resonance 
(2HDM, ∗)

Why these channels? 

𝒕/𝒃 𝒕/𝒃 𝒕/𝒃

Analysis I am working on…
paper out soon

Physics with b and 
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FTK will help!
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R ∗ (  → ∗  )

( → ∗ )


