Higgs to WW - From Peter Higgs to Deep Learning and Histogram Rebinning

<u>Benjamin Jäger</u> 13/02/2020 WNPCC2020

SIMON FRASER UNIVERSITY ENGAGING THE WORLD

The Higgs-boson story (in a tiny nutshell)

- Problem: No explanation of boson masses in theory
- ▶ 1964: Brout-Englert-**Higgs** mechanism with prediction of new particle

2012: Experimental **discovery** of Higgs boson by ATLAS and CMS collaborations at the LHC

Benjamin Jäger

Higgs to WW Analysis

The LHC and the ATLAS Experiment

Benjamin Jäger

Higgs to WW Analysis

Contributing Backgrounds

Several other types of processes that mimic the Higgs signature (a nuisance!)

- Need to select a region (kinematic/topological selections) that is as pure in Higgs events as possible
- Suitable task for a **neural network** to classify events

Benjamin Jäger

Higgs to WW Analysis

- 15 input variables used in the training
 - Mass of the lepton system

Transverse mass of the whole system

m_T

Train a Deep Neural Network for Event Classification (2)

Output of Neural Network

- How to estimate the performance of the DNN classifier?
- Simple estimators for the expected discovery significance can be used:

$$Z = \frac{S}{\sqrt{b}} \qquad \qquad Z = \begin{cases} +\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n \ge b \\ -\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n < b. \end{cases}$$

13

Bins are statistically independent so add them in quadrature: $Z = \sum_{i}^{i} z_{bin} i^{2}$ Benjamin Jäger Higgs to WW Analysis

Binning Optimization Strategies

- ▶ For a stable statistical analysis, we need to reduce the number of bins
- Goal is to exploit the shape as well as possible
- In general: choose as many bins as possible with given statistics and uncertainties

- Method 1: Flat signal rebinning
 - Inputs: # of desired bins
 - Strategy: choose bin boundaries such that in each bin a signal yield of "total signal yield / # of bins" is contained

15

Compare Different Methods

- Methods perform very similarly
- Choose exact binning in final stages of analysis

16

Input to Final Statistical Analysis

After the rebinning the distribution is used in a maximum likelihood fit to and extract parameters of interest (e.g. the cross-section of VBF HWW)

With the new neural network and rebinning the **expected significance** to observe the VBF HWW process was improved from ~6σ to ~8σ! (p-value < 10⁻³⁰)

Benjamin Jäger

Higgs to WW Analysis

Thanks for the attention! Questions?

Benjamin Jäger

Higgs to WW Analysis

Backup

Why Higgs to WW?

- Higgs boson has multiple decay channels
 - Higgs to WW

- 2nd largest branching ratio
- Most sensitive measurement of Higgs to vector-boson coupling
- Channel needed for conservation of unitarity in WW scattering

Higgs to WW Analysis

Binning Optimization Method 2

- Method 2: Significance optimization rebinning
 - Inputs (some are optional):
 - 1. minSignal = 10; minimum signal per bin [skip]
 - 2. minBkg = 10; minimum bkg per bin [skip]
 - 3. maxBkgUnc = 0.2; maximum relative bkg MC uncertainty [skip]
 - 4. maxSignal = 30; sufficient signal to set boundary **[stop]**
 - Strategy:

Train a Neural Network for Event Classification

Variables used in the training (15 in total)
DPhill, DYjj, mjj, mll, mT, ptTot, sumOfCentralitiesL, mL*J* (4), ptJ1/2/3, METSig (15)

New "deep" network architecture

Δ y_.

Higgs to WW Analysis

"A Counting Experiment"

VBF HWW results with LHC data from 2015-2016 (Expected significance: 2.6σ)

Current efforts: precisely measure properties of Higgs boson with data recorded in 2015-2018. (side-goal: measure exclusive VBF HWW with significance > 5σ)

Higgs to WW Analysis

Results contributing to the Higgs boson discovery

Current efforts: precisely measure properties of Higgs boson (with data recorded in 2015-2018)

Benjamin Jäger

Higgs to WW Analysis

13/02/2020

24