

Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

WNPPC 2020 | Banff Alberta | Claire David

A tour of activities in collider physics

ATLAS, multi-purpose detector

Standard Model measurements Higgs boson physics Search of Supersymmetry Search of Dark Matter Search of exotic particles

> Electronics design Data acquisition studies Prototype characterization

> > . . .

A tour of activities in collider physics

ATLAS, multi-purpose detector

Standard Model measurements

Higgs boson physics

Search of Supersymmetry Search of Dark Matter Search of exotic particles

. . .

Electronics design

Data acquisition studies

Prototype characterization

. . .

The Higgs

U

Claire David | WNPPC 2020 Banff, Alberta | Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

The Higgs Doson field mechanism

$\textbf{JOURNALISTS} \quad \text{It is like SNOW}$

a skier (light particle) goes fast and walker sinks (heavy particle)

Higgs field

JOURNALISTS It is like SNOW

a skier (light particle) goes fast and walker sinks (heavy particle)

To learn more: "Status of Higgs Boson Physics" in Particle Data Group

Higgs field

JOURNALISTS It is like SNOW

a skier (light particle) goes fast and walker sinks (heavy particle)

To learn more: "Status of Higgs Boson Physics" in Particle Data Group

EXPERIMENTALISTS There is a measurable resonance to find (done) and study (now)

Higgs boson timeline

1964 ___**O**____

Theoretical formulation

Peter Higgs

François Englert Robert Brout

Tom Kibble Gerald Guralnik Carl Hagen

Higgs boson timeline

"It's really an incredible thing that it's happened in my lifetime" Peter Higgs

Questions

Are the Higgs boson properties exactly as in the Standard Model?

Are there additional Higgs bosons?

Is the Higgs boson a bridge to the dark matter sector?

Answers

through precise measurements of Higgs boson properties

Higgs boson physics: the precision area

inverse femtobarn = 100 trillion (10¹²) proton-proton collisions [fb⁻¹] 160 ATLAS √s = 13 TeV -Preliminary Total Integrated Luminosity Run 2 dataset 40 13 TeV Delivered: 156 fb inverse femtobarn (fb⁻¹) LHC Delivered 139 Recorded: 147 fb⁻¹ 20 Physics: 139 fb⁻¹ ATLAS Recorded data! 100 **Good for Physics** 80 60 Run 1 dataset 7 and 8 TeV 40 2/19 calibration inverse femtobarn (fb⁻¹) 25 20 Jan'15 Jul'15 Jan'16 Jul'16 Jan'17 Jul'17 Jan'18 Jul'18 Link Month in Year

How to measure the Higgs boson?

Claire David | WNPPC 2020 Banff, Alberta | Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

Run: 339849 Event: 1914311665 2017-11-03 00:50:49 CEST

4 lepton decay channel

$H \rightarrow Z Z^* \rightarrow 2 \mu 2 e$ candidate

Higgs boson decay channels

BR = Branching Ratio [in %]

Higgs boson decay channels

BR = Branching Ratio [in %]

Golden channels \rightarrow the cleanest

The Higgs mass

Higgs boson cross-sections

Higgs boson production modes at the LHC

Cross-sections by production mode

Simplified Template Cross-section "STXS"

21

Simplified Template Cross-section "STXS"

singling out regions with different prospects in terms of theory uncertainty

⇒ enhanced sensitivity

Claire David | WNPPC 2020 Banff, Alberta | Higgs

Cross-sections re-optimized with STXS binning

Reduced uncertainties

Pros of STXS framework

- enhanced sensitivity
- smaller theoretical uncertainties
- less model dependance
- easier to interpret
- maximize sensitivity to BSM* in dedicated high p_{τ} bins
- allows machine learning

*BSM = Beyond Standard Model, or 'new physics'

Cross-sections re-optimized with STXS binning

Large correlations between STXS bins ⇒ STXS measurements should be used with correlation matrix!

ATLAS Preliminary

 $H \rightarrow ZZ^* \rightarrow 4I$

13 TeV, 139 fb⁻¹

ZZ-0i

ZZ-1j

ZZ-2j

tXX

6

 $(\sigma \cdot B)_{SM}$ [fb]

 176 ± 22

 550 ± 50

 172 ± 25

 119 ± 19

 19.7 ± 4.1

 125 ± 27

 15.1 ± 4.2

 86.3 ± 3.0

35.9 +2.1

 $16.5^{+1.0}_{-1.6}$

15.4^{+1.0}_{-1.4}

 $\sigma \cdot B/(\sigma \cdot B)_{SM}$

5

 5.76 ± 0.22

Differential cross-section

 $H \rightarrow \gamma \gamma + H \rightarrow ZZ^*$ = combined \rightarrow

Differential cross-section as function of **Higgs boson transverse momentum**

$\mathbf{p}_{\mathrm{T,\,Higgs}}$

 \rightarrow variable sensitive to heavy states

 \rightarrow probing coupling with charm (low p_T)

More: <u>1606.09253</u>

Compatible results between channels

Agreement with theoretical predictions

Higgs boson couplings to fermions

Projections with more data

Claire David | WNPPC 2020 Banff, Alberta | Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

U

WNPPC 2020 Banff, Alberta Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

We need more data

We will get more data

Claire David | WNPPC 2020 Banff, Alberta | Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

U

High-Luminosity LHC

ATLAS future inner tracker

The High-Luminosity LHC program

Luminosity: $2 \times 10^{34} \text{ cm}^{-2} \cdot \text{s}^{-1}$ up to $7.5 \times 10^{34} \text{ cm}^{-2} \cdot \text{s}^{-1}$

= number of collisions that can be produced in a detector per cm² and per second

Improve the discovery potential and precision of measurements

The High-Luminosity LHC program

≈ 7 cm

Zoomed view in the beam pipe at the collision point

The High-Luminosity LHC program

Pile-up = average number of proton-proton interactions per bunch crossing

Requirements

Withstand × 10 higher radiation levels

Manage \times 7.5 channels

ATLAS current inner tracker

= camera for charged particles

ATLAS current inner tracker

Tracker thermo-mechanical prototype

To characterize: \rightarrow mechanical deformations

 \rightarrow thermal performance

Experimental setup

Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

Results: temperature on the sensor surface

Simulation

Finite Element Analysis (FEA)

Measurements Infrared camera 19.48 5.00 2.50 0.83 0.00 -2.50-5.00 -7.50 -10.00 -12.50

Excellent agreement between simulations and experimental measurements
Critical achievement towards the validation of the design

-15.80

End of ATLAS tour

Higgs boson physics

Area of precision measurements of the Higgs boson properties

Explorations to optimize the results for best sensitivity & interpretation

Detector development

Ongoing hardware work to prepare for the High-Luminosity LHC program

Skills gained in High Energy Physics

Data analysis

- Programming, scripting, debugging, git-committing
- Machine Learning techniques
- Statistical interpretation
- Plotting
- Theoretical interpretation Scientific writing Communication Collaborative spirit

Hardware work

Soldering Test bench setup Safety regulations Instrumentation Data acquisition Monitoring Data collection

... transferrable in many domains

Thank you for your attention

Claire David | WNPPC 2020 Banff, Alberta | Higgs boson physics and upgrade work with ATLAS at the Large Hadron Collider

U

More. if needed

Cross-section measurements

The data ⇒ only access to reconstructed events (detector level) ⇒ interested in truth level

