

Thin titanium targets for nuclear cross section measurements of the ^{49,50}Ti(p,x)⁴⁷Sc reactions

Sara Cisternino*

Liliana Mou, Matteo Campostrini, Valentino Rigato, Lucia De Dominicis, Juan Esposito and Gaia Pupillo

*sara.cisternino@lnl.infn.it

*PhD student in Materials Engineering DII University of Padova *Research fellow INFN-LNL – LARAMED project

18th Workshop on Targetry and Target Chemistry (WTTC18)- Whistler, BC - August 22, 2022

R&D on innovative target manufacturing techniques

in the framework of the LARAMED project to overcome the limits of standard techniques Spark Plasma Sintering Thick targets Oral presentation by S. Cisternino – h.08:40 for production Magnetron Sputtering Oral presentation by A. Kotliarenko – h.10:30 **High Energy Vibrational Powder** Thin targets for Plating nuclear XS studies

woo'.

Why HIVIPP technique?

vibrational motion of metallic powder in a static electric field

Advantages:

- ✓ Two targets are deposited simultaneously
- ✓ Efficiency 95-98%
- $\checkmark\,$ Deposition of refractory metals starting from powder
- ✓ Uniform thickness

Requirements:

- Metal substrates
- Metal powder with irregular shape and small size (<10 μm for uniform deposition)

For the REMIX project (2022-2023): ^{49,50}Ti targets (on Al) for nuclear cross-section

measurements for ⁴⁷Sc production needed

Titanium:

- difficult to work with standard technique (rolling, evaporation..)
- Enriched materials :
 - Expensive and supplied in powder form

0.2-3.9 mg/cm²

Oral presentation by G. Pupillo – August 23, h.9:30

Mou, L. : submitted Skliarova, H. : doi:10.1016/j.nima.2020.164371

HIVIPP set up at INFN-LNL

S. Cisternino et al., Instruments 2022, DOI:10.3390/instruments6030023

✓ Easy sample-holder manupulation by one person
✓ Avoid enriched powder escaping from the cylinder

Dedicated clamp to insert (extract) the sample holder

Enriched ^{49,50}Ti materials shape

Sponge-like shape powder

Solution: preliminary powder preparation step

Cryomilling process

- Reduction of the powder size through the milling at liquid nitrogen temperature for temperature sensitive material to avoid melting
- Liquid nitrogen is not in contact with the material of interest to avoid contamination
- Small jar to reduce/avoid the contamination from the jar and sphere materials

Optimization of cryomilling process for powder size reduction

Powder size fits HIVIPP requirement

About 30% of powder lost should be considered Any contamination from EDS analysis

HIVIPP deposition and analysis of^{nat}Ti targets

^{nat} Ti	on	A
-------------------	----	---

HIVIPP parameters		
Voltage	10-15 kV	
Time	10-15 h	
Cylinder	Ø14 mm x 10mm	

Results:

- ✓ Similar thickness for top and bottom
- ✓ Uniform deposition (430±82 μ g/cm², n=8)

✓ Any contaminants from EDS analysis

^{49,50}Ti materials

Elastic backscattering spectroscopy analysis...

...for the exact quantification of the Ti amount deposited

Efficiency of the HIVIPP technique

✓ The cryomilling process is suitable for pre-treatment of enriched material

- No contaminations and desiderable powder size
- ✓ HIVIPP technique allows for uniform Ti deposition
 - High efficiency \rightarrow expensive material saved!
- ✓ EBS analysis used for the extact quantification of Ti before irradiation at Archites
- ✓ The enriched targets are suitable for the **nuclear cross section measurements**→ for the results see the presentation by G. Pupillo (tomorrow morning)

Thank you for the attention

Università degli Studi di Padova

sara.cisternino@lnl.infn.it

