

Possible Material-Saving Approach of Sputtering Techniques for

Radiopharmaceutical Target Production

Ph.D student Alisa Kotliarenko

Co-authors: Dr. Oscar Azzolini, Sara Cisternino, Mourad El Idrissi, Dr. Giorgio Keppel , Dr. Juan Esposito

18th Workshop on Targetry and Target Chemistry Whistler, BC August 22-26, 2022

Work Goal

To evaluate the main magnetron sputtering technique issues and to found a possible solution to use this technique <u>for solid target production</u>

This research was funded by CSN5 of the INFN, Italy for 2018–2022, in the framework of METRICS project. PI: J. Esposito and by INTEFF program at INFN funded by MISE, Italy – in the framework of TOTEM project PI: S.Cisternino.

Università

deali Studi

di Ferrara

Surface Technologies and Superconductivity Service

Chemistry laboratory

Cryo laboratory

Advanced surface treatments for Cu and Nb accelerating cavities Superconductive Nb depositions

Cryogenic characterization

stituto Nazionale di Fisica Nuclear

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@Inl.infn.it

Sputtering laboratory

- Various PVD machines for industrial and scientific interests
- Deposition of metals and ceramic compounds on different substrates

Magnetron sputtering

Planar magnetron sputtering

ORI NAZIONALI DI LEGNAF

Università

degli Studi

di Ferrara

Magnetron sputtering

Planar magnetron sputtering

Idea of inverted magnetron sputtering

Magnetron sputtering - characteristics

- $\checkmark\,$ Precise thickness control
- ✓ High adherence
- \checkmark Densification of the deposition
- Material sputtered everywhere in the vacuum chamber
- Material losses 80%

Magnetron sputtering for target production

nat-Mo targets preparation

[Patent n. WO 2019/053570] [Skliarova et al., Molecules 2021]

nat-Y target preparation

- 7 targets simultaneous depositions
- Thickness range 150-200 μm

2 Possible material-saving approach

2 inch planar magnetron evaluation

Recovering shield

Magnetron and diode sputtering techniques

2 Possible material-saving approach

Material results	Magnetron,%	Diode, %
On the substrate	38,9±0,003	21,6±0,035
On the shield	56,3±0,005	71,6±0,113
Losses	4,8±0,008	6,8±0,148

[Kotliarenko et al., Applied Science 2021]

Growing beheviour of MS and Diode depositions

2 Inverted magnetron idea

Initial design

Dimensions: External **h** 80 mm Ø 160 mm Cathode **h** 60 mm Ø 100 mm Prototype design

- Simpler system
- Does not require shielding
- Easy maintenance

Dimensions: External **h** 106 mm **Ø** 89 mm Cathode **h** 106 mm **Ø** 59 mm

Produced prototype

2 Inverted magnetron - proof of concept

TEST 30

Cu deposition: $\emptyset 10 \text{ mm x } 40 \text{ }\mu\text{m}$ Nb: $\emptyset 24 \text{ x } 0,5 \text{ mm}$

Gas flows: Ar -3,5 sccm Power: $I_{const} 1 A;$ $U \sim 500 V$ Time: 150 min Coil power: 5,5 A

Morphology of Cu deposition

2 Inverted magnetron – standart magnetron

Inverted MS 13. SE

Standard MS

Growing beheviour of Cu deposition

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@Inl.infn.it

12/21

3 nat-ZnO deposition test

Reactive sputtering process

Reactive process of ZnO

Morphology of ZnO deposition

TEST ZnO - 8

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@Inl.infn.it

14/21

TEST ZnO - 8

ZnO test 8 Cross section

15[KV] SP=10 WD=8.6

Polycristalline growing behaviour of ZnO deposition

2022-06-07

Deposition rate: 130 nm/min

ZnO test 8 Cross section

15[KV] SP=11 WD=8.7

SE

10.0[um] HV

x4.0k

x8.9k

5.0[um]

ΗV

SE

2022-06-02

Interface analysis

Sample preparation

Cutting with electro erosion and step-lapping with different abrasive papers

High adhesion of ZnO to Nb

- Crystalline structure
- Similar to nat-ZnO powder
- Preferential (002) crystal growing

XRD diffractogram

Sputtering parameters

Università

degli Studi

di Ferrara

18/21

Targets parameter

ZnO deposition: Ø10 mm x 20 μ m; ρ_{ZnO} ~ **73 %** bulk **Nb:** Ø23.7 x 1,2 mm Areal ρ ~ 8,4 mg/cm²

Morphology of ZnO targets

ZnO deposition: Ø10 mm x 30 μ m; ρ_{ZnO} ~ **71 %** bulk **Nb:** Ø23.7 x 1,2 mm Areal ρ ~ 12,1 mg/cm²

Università

degli Studi

di Ferrara

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@lnl.infn.it

3 nat-ZnO deposition test – irradiation

Targets parameter

ZnO deposition: Ø10 mm x 20 µm; ρ_{ZnO} ~ **73 %** bulk **Nb:** Ø23.7 x 1,2 mm Areal ρ ~ 8,4 mg/cm²

Irradiation parameter

Energy 19 MeV, p+ current 10 µA 5 min

Thermo-mechanical irradiations tests

ZnO deposition: Ø10 mm x 30 μ m; ρ_{ZnO} ~ **71 %** bulk **Nb:** Ø23.7 x 1,2 mm Areal ρ ~ 12,1 mg/cm²

Energy 19 MeV, p+ current 20 µA 5 min

Conclusions

- Evaluation of sputtering techniques from the material point of view
 - Realization of recovering shield for standard magnetron deposition

- An alternative sputtering configuration
 proposed and realized
 - First nat-ZnO targets realization by inverted magnetron technique

Is the magnetron sputtering technique suitable for ZnO target production?

Thank you for your attention!

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@lnl.infn.it

Conclusions

- Evaluation of sputtering techniques from the material point of view
 - Realization of recovering shield for standard magnetron deposition

- An alternative sputtering configuration
 proposed and realized
 - First nat-ZnO targets realization by inverted magnetron technique

Is the magnetron sputtering technique suitable for ZnO target production?

Thank you for your attention!

18th Workshop on Targetry and Target Chemistry Whistler Alisa Kotliarenko – alisa.kotliarenko@lnl.infn.it