

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Initial Tests of the Recoil Mass Spectrometer EMMA

July 14th, 2017 Barry Davids

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

EMMA in ISAC-II

ISAC-II at TRIUMF

Transverse Emittance

RIUMF

High quality RIBs with $2 \le A/Q \le 6$ $0.6A \text{ MeV} \le \text{Energy} \le 16.5A \text{ MeV}$ At 6A MeV, implies at the target position 95% of the beam can be within 0.5 mm of the optic axis with an angle of 5 mrad or less 3

®TRIUMF Nuclear Structure at the Extremes

- Single-particle structure at extreme N/Z values, particularly at and near closed shells (single-nucleon transfer)
- Pairing interactions in N ~ Z nuclei via (p,t), (³He,p), (d, α), (t,p)
- Production and decay studies of highly neutron-rich nuclei via multi-neutron transfers, e.g. (¹⁸O,¹⁵O)
- High-spin physics in neutron-deficient nuclei via fusionevaporation reactions (including isomers)

O Direct Studies: Radiative capture
 reactions (α, n) and (α, p) reactions \odot Time-reversed (α ,p) reactions Indirect Studies: Spectroscopy of unbound states Particle-decay branching ratios

Defining the Problem I

In transfer and fusion-evaporation reactions, spectroscopic information obtained from detecting light ejectiles and gamma rays

- Interpretation of spectra complicated or rendered impossible by background from other channels
- For transfers with light ejectile detection, kinematic lines obscured by diffuse background
- Solution For fusion-evaporation, gamma spectra contaminated by lines from other nuclei, frequently produced much more copiously than the nucleus of interest
- Direct identification of residual nuclei required

Defining the Problem II

- Use of particle detectors to directly detect recoils complicated by 2 problems:
 - In both fusion-evaporation and transfer reactions in inverse kinematics, heavy recoils emerge from target within the cone of elastically scattered beam particles; for sufficiently intense beams, these detectors cannot count fast enough
 - For heavy recoils (m > 100 u), energy resolution of these detectors is insufficient to permit unique identification
- Recoil separator needed to separate recoils from beam, identify according to A and Z, and localize them for subsequent decay studies

Requirements

- \odot Must be capable of 0° operation with good beam rejection
- Short flight time will allow study of short half-life radioactivities
- Good energy resolution is not helpful
 - Energy and angular resolution of detected heavy recoils insufficient to resolve states for A > 30 beams
 - Energy-focussing operation desirable
- Large angular, mass/charge, and energy acceptances required for high collection efficiency
 - Angular acceptance should be symmetric
 - At least 2 charge states for sufficiently massive recoils

Acceptance and Resolution

- Angular and energy spreads largest for fusion-evaporation reactions ($\Omega \sim 10-30 \text{ msr}, \Delta E/E \sim \pm 20\%$)
- Angle and energy spread not independent
- To take advantage of large angular acceptance, need large energy acceptance
- Large energy acceptance requires minimal chromatic aberrations to maintain resolving power
- Mass resolution requirement set by single-nucleon transfer reactions in inverse kinematics: must have first order resolving power $M/\Delta M \ge 400$

BURNUMF How About a Magnetic Spectrometer?

d(132 Sn, p) 133 Sn at 6 A MeV with 100 μ g cm $^{-2}$ (CD₂)_n target; smallest achievable beam energy spread; protons from 90-170 deg in lab ¹⁰

EMMA: The ISAC-II Recoil Spectrometer

- EMMA: recoil mass spectrometer spatially separates heavy products of nuclear reactions from beam & disperses according to mass/charge ratios
- Solid angle = $\pm 3.6^{\circ}$ by $\pm 3.6^{\circ} = 15$ msr
- Energy acceptance = +25%, -17%
- Mass/charge acceptance = $\pm 4\%$
- 1st order m/q resolving power = 551

EMMA Ion Optics: Mass Focus

9 Adjacent Masses Emitted from Target with Vertical Angles of $0, \pm 2^{\circ}$ ¹²

EMMA Ion Optics: Energy Focus

Single Mass, Vertical Angles of $0, \pm 2^{\circ}$, Energies Deviating from Central Value by $0, \pm 7.5\%$ and $\pm 15\%$ ¹³

TRIUMF-Built HV Supplies

- Built 3 positive and 3 negative
- All have been tested to $|V| \ge 325 \text{ kV}$
- Housed in re-entrant ceramic vessels
- Pressurized with 3 bar SF₆

Complete ED2 Electrode Assembly

Vacuum Systems

RIUMF

- Typical pressures in 3/4 vacuum sections in nTorr range; 1000 l/s turbos and 1500 l/s cryos
- Focal plane box has a single 1000 l/s turbo; pressure in low 10⁻⁶ Torr range

Target Chamber

- Integral Faraday cup with 1 mm entrance aperture coincides spatially with target position
- Target wheel with 3 positions

TRIUMF

• Pumped by beam line 500 l/s turbo; pressure in low 10-7 Torr range

Slit Systems

- Plate slit systems upstream and downstream of dipole magnet
- More complex focal plane slit system has 2 plates and 2 rotatable fingers, allowing for 3 openings of variable width and position

Focal Plane Detectors

Position resolution 1 mm Timing resolution 660 ps

Ionisation Chamber

Ionisation chamber tested with alpha and fission sources on bench

- There was no time to commission with an alpha source prior to December 16th beam time
- Bombarded thick
 Au foil with 80
 MeV ³⁶Ar beam
- Tuned for multiply scattered beam with very large angular spread

 Si-detector measured residual energy spread of 40% FWHM

TRIUMF

Consistent with genergy
 acceptance of +25%, -17%

Residual Energy (arbitrary units)

Measured Focal Plane Position Spectrum of Scattered ³⁶Ar

FRIUMF

EMMA's First M/Q Spectrum

Measured mass/charge dispersion & resolving power consistent with ion optical calculations

Si-detector
 measured
 residual energy
 spread of 111%
 FWHM

RIUMF

 Consistent with filling energy
 acceptance +
 energy loss
 straggling in
 PGAC windows

Residual Energy (arbitrary units)

Measured Focal Plane Position Spectrum of Scattered ¹⁹⁷Au

Set for ¹⁹⁷Au⁹⁺, observed single mass peak, no background in hour-long run with 10⁹ ions/s on target implying hardware beam suppression > 10^{12}

Approved Experiments

- Three approved experiments, two of which require TIGRESS to be installed around EMMA target position
- Transfer experiment: ${}^{6}\text{Li}({}^{17}\text{O},d){}^{21}\text{Ne}$ to infer ${}^{17}\text{O}(\alpha,\gamma){}^{21}\text{Ne}$ reaction cross section for the *s* process; also requires SHARC
- Radiative capture experiment: direct measurement of $p({}^{83}\text{Rb},\gamma){}^{84}\text{Sr}$ reaction cross section at *p* process energies
- $p({}^{21}Na,\alpha){}^{18}Ne$ to infer ${}^{18}Ne(\alpha,p){}^{21}Na$ reaction cross section for Type I X-ray bursts
- Approved Letter of Intent: direct measurement of $p(^{79}Br,\gamma)^{80}Kr$ reaction cross section

Future Plans

- Continue HV conditioning
 - Both anodes and cathodes conditioned to 250 kV
 - ED2 conditioned to $\Delta V = 425 \text{ kV}$, ED1 has only reached 340 kV so far
- Alpha source acceptance/resolving power tests in August
- Elastic scattering and fusion evaporation reactions with stable Ar beam starting Sep. 23, to complete commissioning
- Standalone experiments possible in fall schedule
- TIGRESS move to EMMA target position anticipated during shutdown 2017-2018
- Inviting nuclear structure proposals

Core Personnel

- Martin Alcorta, ISAC Target & Detector Physicist
- Nicholas Esker, Postdoctoral Researcher
- Kevan Hudson, MSc Student
- Naimat Khan, Project Engineer
- Peter Machule, Expert Technician
- Matt Williams, PhD Student