Exploring major nuclear structure issues with rare isotopes

Jason D. Holt
Scientist, Theory Department
Science Week
August 19, 2020

Next-generation RIB facilities: unprecedented era of nuclear science
Thousands of new isotopes to be produced - need intense beams to probe essential properties
Q: How do we avoid "stamp collecting"?

Next-generation RIB facilities: unprecedented era of nuclear science
Thousands of new isotopes to be produced - need intense beams to probe essential properties
Q: How do we avoid "stamp collecting"? A: Meaningful interplay with theory

迅TRIUMF

Big questions largely driven by theory; similar needs for all RIB facilities - is theory ready??

How do we currently approach nuclear theory?

きTRIUMF

How well can models motivate experiments?

Agreement good where data exists

How well can models motivate experiments?

Often extrapolates unreliably
Spread in results = meaningful uncertainty?

迅TRIUMF

Predictions with Nuclear Models
How well can models motivate experiments?

Analogous picture in double beta decay

More billions invested worldwide

Often extrapolates unreliably
Spread in results = meaningful uncertainty?

き TRIUMF

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

$$
H \psi_{n}=E_{n} \psi_{n}
$$

き TRIUMF

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$
H \psi_{n}=E_{n} \psi_{n}
$$

- Electroweak physics
"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces."

Ab Initio Theory for Atomic Nuclei
Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

$$
H \psi_{n}=E_{n} \psi_{n}
$$

Chiral effective field theory: systematic expansion of nuclear interactions
Consistent 3 N forces, electroweak currents
Quantifiable uncertainties possible

き TRIUMF

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

$$
H \psi_{n}=E_{n} \psi_{n}
$$

- Nuclear many-body problem
"If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei."

发TRIUMF

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power
Methods for light nuclei (QMC, NCSM) scale exponentially with mass

发TRIUMF

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power
Methods for light nuclei (QMC, NCSM) scale exponentially with mass
Polynomial scaling methods developed (CC, VS-IMSRG, SCGF) Explosion in limits of ab initio theory

色TRIUMF

发TRIUMF

Chronologicat Reach of Ab Initio Theory

Moore's law: exponential growth in computing power
2020: $A>100 ?$
Methods for light nuclei (QMC, NCSM) scale exponentially with mass
Polynomial scaling methods developed (CC, VS-IMSRG,...) Explosion in limits of ab initio theory解TRIUMF

发TRIUMF

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

迅TRIUMF

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

迅TRIUMF

Towards Global Ab Initio Calculations
Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

$$
\begin{array}{ll}
\text { - Nuclear forces, electroweak physics } & H \psi_{n}=E_{n} \psi_{n} \\
\text { - Nuclear many-body problem }
\end{array}
$$

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$
H \psi_{n}=E_{n} \psi_{n}
$$

Laser Spectroscopy: Charge Radii Across Chains
Study odd-even staggering of charge radii across isotopic chains

Cu isotopes, odd-even staggering well reproduced
Ab initio competitive with DFT (fit to reproduce odd-even staggering)

迅TRIUMF

Global Trends in Absolute B(E2): sd Shell
Study charge E2 transitions across sd-shell

USDB with effective charges typically reproduces absolute values well VS-IMSRG (no effective charges) typically underpredicts experiment Trends well reproduced in both...

迅TRIUMF

Global Trends in B(E2): IS/IV Components
Study charge E2 transitions across sd-shell: IS (M_{0}) and IV $\left(\mathrm{M}_{1}\right)$

IS: USDB good agreement, VS-IMSRG systematically small IV: Both agree well

Deficiencies in IS only

Ab Initio GT Decays in Medium-Mass Region

Comparison to standard phenomenological shell model

Ab initio calculations across the chart explain data with free-space g_{A}

Refine results with improvements in forces and many-body methods

迅TRIUMF

TRUMF's nuclear astrophysics prograth *. in the era of multi-messenger astronomy

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces, electroweak physics

$$
H \psi_{n}=E_{n} \psi_{n}
$$

- Nuclear many-body problem

迅 TRIUMF

Global Ground-State Energy Residuals

Ab initio calculations of nearly 700 nuclei... how to analyze uncertainties?

rms deviation at level of BW Mass formula, approaching EDF models Input Hamiltonians fit to $A=2,3,4$ - not biased towards known data

What is deviation for separation energies? Apply to nuclear driplines

き TRIUMF

Determine rms deviation from experiment - extrapolate this uncertainty beyond data

Neutron Number N

Determine range of likely separation energies reaching 0
Assign probability that a particular nucleus is bound

发TRIUMF

Dripline Prediction to Iron Isotopes
First predictions of proton and neutron driplines from first principles

Known drip lines largely predicted within uncertainties (issues remain at shell closures)
Provide ab initio predictions for neutron-rich region

迅TRIUMF

Dripline Flagship RIB Science Motivation

New measurements determine dripline in F and Ne isotopes, extend known Na isotopes

All new measurements agrees well with ab initio predictions
Next-generation RIB aim to extend driplines to Ca!

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$
H \psi_{n}=E_{n} \psi_{n}
$$

迅 TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, vital for r-process nucleosynthesis

迅TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

发TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Signatures of Magic Numbers

Sharp decrease in separation energy (masses)
Elevated first excited 2+ energy (spectroscopy)
Tightly bound (decreased radii)
Must observe all signatures - many experiments (and calculations) needed!

发TRIUMF

Evolution of N=32,34 Magic Numbers

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Highlight of TRIUMF theory and experiment:
Discovery and evolution of new $\mathrm{N}=32,34$ magic numbers in calcium region

N=32,34 Magic Numbers: Spectroscopy

2013 potentially new magic numbers from 2^{+}energies: $\mathrm{N}=32,34-\mathrm{New}{ }^{54} \mathrm{Ca}$ measurement at RIKEN

Phenomenological Models

Readjusted to fit new data

Ab initio theories

Correctly predicted excitation energy of $\mathrm{N}=34$!

迅 TRIUMF

N=32,34 Magic Numbers: Masses

2013-2018 impressive series of experiments; ideal example of theory/exp overlap Story continues at RIKEN

TITAN @ TRIUMF Measurement
Flat trend from ${ }^{50-52} \mathrm{Ca}$
${ }^{52} \mathrm{Ca} 1.74 \mathrm{MeV}$ deviation from AME!

ISOLTRAP @ CERN Measurement

Sharp decrease from ${ }^{52-54} \mathrm{Ca}$
Confirms N=32 magic number
RIBF @ RIKEN Measurement
Modest decrease past ${ }^{54} \mathrm{Ca}$
Confirms N=34 magic number

Ab Initio

Excellent agreement with RIBF data
Predicts doubly magic ${ }^{48,52,54} \mathrm{Ca}$

き TRIUMF

Dawning of N=32 Magic Number: Masses
Further questions: how do magic numbers evolve with proton number?

Current frontier of measurements and theory

New TITAN Measurements of Ti masses
Probe "dawning" of $\mathrm{N}=32$ magic number

Ab Initio from NN+3N

Generally good agreement, but predicts appearance too early Future: Evolution to be measured in Ar, CI

き TRIUMF

Persistence of N=34 Magic Number Below Ca
New measurement at RIKEN: 2^{+}energy in ${ }^{52} \mathrm{Ar}$ - clear peak at $\mathrm{N}=34$

Agreement with IMSRG and other ab initio predictions (coupled cluster theory) First evidence for persistence of $\mathrm{N}=34$ magic number away from calcium!

迅 TRIUMF

Discovery of Doubly Magic ${ }^{78} \mathrm{Ni}$
Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

New measurement at RIKEN 2^{+}energy in ${ }^{78} \mathrm{Ni}$ - clear peak compared to ${ }^{76} \mathrm{Ni}$

Peak wrt neighboring systems well predicted by IMSRG (also phenomenology)
First evidence for the (double) magicity of ${ }^{78} \mathrm{Ni}$
Next: determine evolution below $\mathrm{Z}=\mathbf{2 8}$

发TRIUMF

Currently Unmeasured: ${ }^{100}$ Sn
Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Structure of Light Tin Isotopes
Extend ab initio to heavy-mass region: magicity of ${ }^{100} \mathrm{Sn}$, controversial level ordering in ${ }^{101} \mathrm{Sn}$

Predicts doubly magic nature from 2^{+}energies and $B(E 2)$ systematics Limits of ab initio theory...

Morris et al., PRL (2018)

Both calculations predict 5/2+ ground state

迅TRIUMF

Can ab initio Treat Neutron-Rich Tin?

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

き TRIUMF

Problematic Convergence of N=70 Gap
Several studies show $\mathrm{N}=70$ gap clearly not converged wrt $\mathrm{E}_{3 \max }$ - for neutron-rich $\mathrm{Sn}, \mathrm{In}, \mathrm{Cd} . .$.

Lascar et al PRC (2017)

Resorted to unreliable extrapolations...

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

®た TRIUMF

Towards Global Ab Initio Calculations
Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

Address Major Nuclear Structure Issues

1) How do nuclei, processes emerge from fundamental interactions of nature?
2) What are the limits of existence of matter?
3) How do magic numbers evolve?
4) Applications to fundamental symmetries and nuclear astrophysics

Extension to heavy nuclei necessary - limited by 3N element storage

0	20	40	60	80	100	120	140

き TRIUMF

Improvements in storage of 3 N matrix elements greatly expands reach of ab initio theory!

First converged calculations of 132 Sn !
Opens new region of chart to ab initio theory

Towards Heavy Nuclei: ${ }^{132}$ Sn
Improvements in storage of 3 N matrix elements greatly expands reach of ab initio theory!

First converged calculations of ${ }^{132} \mathrm{Sn}$!
Opens new region of chart to ab initio theory

$$
-e_{\max }=10-\infty e_{\max }=12-e_{\max }=14 \backsim e_{\max }=15
$$

き TRIUMF

Convergence of N=82 Gap

Size of $\mathrm{N}=70$ gap clearly not converged wrt E3max - for neutron-rich $\mathrm{Sn}, \mathrm{In}, \mathrm{Cd} . .$.

Lascar et al PRC (2017)

Resorted to unreliable extrapolations...

New capabilities: converged spectra in $\mathrm{N}=82$ region!

Explore new physics near ${ }^{132} \mathrm{~S} n$!

迅TRIUMF

Towards Global Ab Initio Calculations
Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

迅TRIUMF

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

发TRIUMF

One more thing... Can we go heavier?

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

き TRIUMF

Can We Ever Compute ${ }^{208}$ Pb?

Improvements in storage of 3 N matrix elements greatly expands reach of ab initio theory! Increased $\mathrm{E}_{3 \max }$ range allows first reliable convergence of ${ }^{208} \mathrm{~Pb}$

迅TRIUMF

Can We Ever Compute ${ }^{208} \mathrm{~Pb} ?$
Improvements in storage of 3 N matrix elements greatly expands reach of ab initio theory! Increased $\mathrm{E}_{3 \max }$ range allows first reliable convergence of ${ }^{208} \mathrm{~Pb}$

Machine learning algorithms sample "all" chiral interactions: $100000{ }^{208} \mathrm{~Pb}$ calculations - billions in progress
Heat map of neutron skin/ground state energy - constraints on equation of state and neutron stars!

迅TRIUMF

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

Present and Future

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

Nuclear Structure

Development of forces and currents ${ }^{1}$
Dripline predictions for medium-mass
Evolution of magic numbers from masses, radii, spectroscopy, EM transitions: ${ }^{78} \mathrm{Ni}$ Multi-shell theory: Island of inversion ${ }^{2}$ Forbidden decays ${ }^{3}$
Atomic systems ${ }^{4}$

Fundamental Symmetries/BSM Physics
Effective electroweak operators: GT quenching
Effective $0 v \beta \beta$ decay operator ${ }^{5}$
WIMP-Nucleus scattering ${ }^{6}$
Superallowed Fermi transitions ${ }^{7}$
Symmetry-violating moments [molecules] ${ }^{8}$
Experimental overlap
Best data for constraining nuclear forces
New measurements of driplines
Data on magic numbers in exotic nuclei Precision data on GT transitions

Future: Evolution of $\mathbf{N}=28,32,34$ Magic Numbers
Ab initio predictions from above calcium towards oxygen - persistence of $\mathrm{N}=34$

Mass Number A

き TRIUMF

Calculate large GT matrix elements

$$
\begin{aligned}
& M_{\mathrm{GT}}=g_{A}\langle f| \mathcal{O}_{\mathrm{GT}}|i\rangle \\
& \mathcal{O}_{\mathrm{GT}}=\mathcal{O}_{\sigma \tau}^{1 \mathrm{~b}}+\mathcal{O}_{2 B C}^{2 \mathrm{~b}}
\end{aligned}
$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of $\mathrm{NN}+3 \mathrm{~N}$ forces
- Consistent inclusion of $2 B C$

Large-Scale Efforts for Ab Initio GT Transitions

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ${ }^{100} \mathrm{Sn}$.

发TRIUMF

Calculate large GT matrix elements

$$
\begin{aligned}
& M_{\mathrm{GT}}=g_{A}\langle f| \mathcal{O}_{\mathrm{GT}}|i\rangle \\
& \mathcal{O}_{\mathrm{GT}}=\mathcal{O}_{\sigma \tau}^{1 \mathrm{~b}}+\mathcal{O}_{2 B C}^{2 \mathrm{~b}}
\end{aligned}
$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of $\mathrm{NN}+3 \mathrm{~N}$ forces
- Consistent inclusion of 2BC

Large-Scale Efforts for Ab Initio GT Transitions

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ${ }^{100} \mathrm{Sn}$.

GT Transitions in Light nuclei and ${ }^{100}$ Sn
NCSM in light nuclei, CC calculations of GT transition in ${ }^{100} \mathrm{Sn}$ from different forces

Gysbers et al., Nature Phys. (2019)

NCSM in light nuclei, CC calculations of GT transition in ${ }^{100} \mathrm{Sn}$ from different forces

Large quenching effect from correlations

Gysbers et al., Nature Phys. (2019)

GT Transitions in Light nuclei and ${ }^{100}$ Sn
NCSM in light nuclei, CC calculations of GT transition in ${ }^{100} \mathrm{Sn}$ from different forces

Large quenching effect from correlations

き TRIUMF

Ab Initio GT Decays in Medium-Mass Region

Ab initio calculations of large GT transitions in $s d$, pf shells

Bare operator similar to phenomenological shell model

Modest quenching from consistent ab initio wavefunctions and operators

Further modest quenching from 2BC

Gysbers et al., Nature Phys. (2019)

迅TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
& U=e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
& \tilde{H}=e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

All operators truncated at two-body level IMSRG(2)
IMSRG(3) in progress

Step 1: Decouple core

$$
\left\langle\tilde{\Psi}_{n}\right| P \tilde{H} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| H\left|\Psi_{i}\right\rangle
$$

迅TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
& U=e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
& \tilde{H}=e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

All operators truncated at two-body level IMSRG(2)
IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

迅TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
& U=e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
& \tilde{H}=e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

$$
\tilde{\mathcal{O}}=e^{\Omega} \mathcal{O} e^{-\Omega}=\mathcal{O}+[\Omega, \mathcal{O}]+\frac{1}{2}[\Omega,[\Omega, \mathcal{O}]]+\cdots
$$

Step 1: Decouple core

Step 2: Decouple valence space Step 3: Decouple additional operators

$$
\begin{aligned}
& \left\langle\tilde{\Psi}_{n}\right| P \tilde{H} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| H\left|\Psi_{i}\right\rangle \\
& \left\langle\tilde{\Psi}_{n}\right| P \tilde{M}_{0 \nu} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| M_{0 \nu}\left|\Psi_{i}\right\rangle
\end{aligned}
$$

$$
=\left|{ }^{16} \mathrm{O}\right\rangle
$$

Careful benchmarking essential

$\langle P\| H\|P\rangle$	$\langle P\| H\|Q\rangle \rightarrow 0$
$\langle Q\| H\|P\rangle \rightarrow 0$	
	$\langle Q\| H\|Q\rangle$

迅TRIUMF

Valence-Space IMSRG: From Oxygen to Calcium

New approach accesses *all* nuclei: agrees to 1% with large-space methods

Stroberg et al., PRL (2017)
Agreement with experiment deteriorates for heavy chains (due to input Hamiltonian)
Significant gain in applicability with little/no sacrifice in accuracy
Low computational cost: ~ 1 node-day/nucleus

※ TRIUMF

Connection to Infinite Matter: Saturation as a Guide
$\mathrm{NN}+3 \mathrm{~N}$ force with good reproduction of ground-state energies (but poor radii)

きTRIUMF

Dramatic improvement with respect to experimental data

Opens possibility for reliable ab initio predictions across the nuclear chart!
Accesses all properties of all nuclei:

- Ground states, excited states, radii, electroweak transitions...

