

NRC.CNRC

Exploring major nuclear structure issues with rare isotopes

Jason D. Holt

Scientist, Theory Department Science Week August 19, 2020

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Next-generation RIB facilities: unprecedented era of nuclear science

Major RIB Facilities

2

Thousands of new isotopes to be produced – need intense beams to probe essential properties

Q: How do we avoid "stamp collecting"?

Next-generation RIB facilities: unprecedented era of nuclear science

Major RIB Facilities

3

Thousands of new isotopes to be produced – need intense beams to probe essential properties

Q: How do we avoid "stamp collecting"? A: Meaningful interplay with theory

How Science Works

Big questions largely driven by theory; similar needs for all RIB facilities – is theory ready??

How do we currently approach nuclear theory?

Predictions with Nuclear Models

How well can models motivate experiments?

Agreement good where data exists

Predictions with Nuclear Models

How well can models motivate experiments?

Often extrapolates unreliably Spread in results = meaningful uncertainty?

Predictions with Nuclear Models

How well can models motivate experiments?

Often extrapolates unreliably Spread in results = meaningful uncertainty?

% TRIUMF

Ab Initio Theory for Atomic Nuclei

$$H\psi_n = E_n\psi_n$$

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

$$H\psi_n = E_n\psi_n$$

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces."

Ab Initio Theory for Atomic Nuclei

NLO $O\left(\frac{Q^2}{\Lambda^2}\right)$

 $N^{2}LOO\left(\frac{Q^{3}}{\Lambda^{3}}\right)$

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

- $H\psi_n = E_n\psi_n$
- Chiral effective field theory: systematic expansion of nuclear interactions

Consistent 3N forces, electroweak currents

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified first-principles picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics
- Nuclear many-body problem

"If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei."

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Polynomial scaling methods developed (CC, VS-IMSRG,...) Explosion in limits of ab initio theory

2020: A>100?

Breadth of Ab Initio Theory

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Breadth of Ab Initio Theory

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Study odd-even staggering of charge radii across isotopic chains

Cu isotopes, odd-even staggering well reproduced

Ab initio competitive with DFT (fit to reproduce odd-even staggering)

Global Trends in Absolute B(E2): sd Shell

Study charge E2 transitions across sd-shell

USDB with effective charges typically reproduces absolute values well VS-IMSRG (**no effective charges**) typically underpredicts experiment Trends well reproduced in both...

Global Trends in B(E2): IS/IV Components

Study charge E2 transitions across sd-shell: IS (M₀) and IV (M₁)

Ab Initio GT Decays in Medium-Mass Region

Comparison to standard phenomenological shell model

Ab inition calculations across the chart explain data with free space gA

Refine results with improvements in forces and many-body methods

TRIUMF Breadth of Ab Initio: Access to Most Observables

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Global Grou State Energy Residuals

s?

Ab initio calculations of nearly 700 nuclei... how to analyze uncert

rms deviation at level of BW Mass formula, approaching EDF models

Input Hamiltonians fit to A=2,3,4 – not biased towards known data

What is deviation for separation energies? Apply to nuclear driplines

Estimating Dripline Uncertainites

Determine rms deviation from experiment – extrapolate this uncertainty beyond data

Determine range of likely separation energies reaching 0

Stroberg et al arXiv:1905.10475

Assign probability that a particular nucleus is bound

Dripline Prediction to Iron Isotopes

First predictions of proton and neutron driplines from first principles

Known drip lines largely predicted within uncertainties (issues remain at shell closures) Provide ab initio predictions for neutron-rich region

%TRIUMF

Dripline Flagship RIB Science Motivation

New measurements determine dripline in F and Ne isotopes, extend known Na isotopes

All new measurements $\underset{\text{agrees well with ab}}{H(s=0)} \xrightarrow{H(\infty)} H(\infty)$ initio predictions

Next-generation RIB aim to extend driplines to Ca!

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

∂TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, vital for r-process nucleosynthesis

∂TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Signatures of Magic Numbers

Sharp decrease in separation energy (masses) Elevated first excited 2+ energy (spectroscopy) Tightly bound (decreased radii)

Must observe all signatures – many experiments (and calculations) needed!

※TRIUMF Evolutio

Evolution of N=32,34 Magic Numbers

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Highlight of TRIUMF theory and experiment:

Discovery and evolution of new N=32,34 magic numbers in calcium region

N=32,34 Magic Numbers: Spectroscopy

2013 potentially new magic numbers from 2⁺ energies: N=32,34 – New ⁵⁴Ca measurement at RIKEN

Phenomenological Models

Readjusted to fit new data

Ab initio theories

Correctly predicted excitation energy of N=34!

% TRIUMF

N=32,34 Magic Numbers: Masses

2013-2018 impressive series of experiments; ideal example of theory/exp overlap Story continues at RIKEN

TITAN @ TRIUMF Measurement Flat trend from ⁵⁰⁻⁵²Ca ⁵²Ca 1.74 MeV deviation from AME!

ISOLTRAP @ CERN Measurement

Sharp decrease from ⁵²⁻⁵⁴Ca Confirms N=32 magic number

RIBF @ RIKEN Measurement

Modest decrease past ⁵⁴Ca Confirms N=34 magic number

Ab Initio

Excellent agreement with RIBF data Predicts doubly magic ^{48,52,54}Ca

Dawning of N=32 Magic Number: Masses

Further questions: how do magic numbers evolve with proton number?

Current frontier of measurements and theory

New TITAN Measurements of Ti masses

Probe "dawning" of N=32 magic number

Ab Initio from NN+3N

Generally good agreement, but predicts appearance too early

Future: Evolution to be measured in Ar, Cl

Leistenschneider et al, PRL 2018

% TRIUMF Persistence of N=34 Magic Number Below Ca

New measurement at RIKEN: 2⁺ energy in ⁵²Ar – clear peak at N=34

Agreement with IMSRG and other ab initio predictions (coupled cluster theory) **First evidence for persistence of N=34 magic number away from calcium!**

∂TRIUMF

Discovery of Doubly Magic⁷⁸Ni

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Missing Pillar: Magicity of ⁷⁸Ni?

New measurement at RIKEN 2⁺ energy in ⁷⁸Ni – clear peak compared to ⁷⁶Ni

Peak wrt neighboring systems well predicted by IMSRG (also phenomenology)

First evidence for the (double) magicity of ⁷⁸Ni

Next: determine evolution below Z=28

∂TRIUMF

Currently Unmeasured: ¹⁰⁰Sn

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Structure of Light Tin Isotopes

Extend ab initio to heavy-mass region: magicity of ¹⁰⁰Sn, controversial level ordering in ¹⁰¹Sn

Predicts doubly magic nature from 2⁺ energies and B(E2) systematics Limits of ab initio theory...

Both calculations predict 5/2+ ground state

Can ab initio Treat Neutron-Rich Tin?

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Problematic Convergence of N=70 Gap

Several studies show N=70 gap clearly not converged wrt E_{3max} – for neutron-rich Sn, In, Cd...

 $F_{3/2}^{1/2}$

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Ζ

Towards Global Ab Initio Calculations

bles picture of structure and reactions

Towards Heavy Nuclei: ¹³²Sn

Improvements in storage of 3N matrix elements greatly expands reach of ab initio theory!

First converged calculations of 132Sn! Opens new region of chart to ab initio theory

Towards Heavy Nuclei: ¹³²Sn

Improvements in storage of 3N matrix elements greatly expands reach of ab initio theory!

First converged calculations of ¹³²Sn! Opens new region of chart to ab initio theory

Convergence of N=82 Gap

Size of N=70 gap clearly not converged wrt E3max – for neutron-rich Sn, In, Cd...

New capabilities: converged spectra in N=82 region!

Explore new physics near ¹³²Sn!

 $\frac{1/2}{3/2}$

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

One more thing... Can we go heavier?

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

% TRIUMF

Can We Ever Compute ²⁰⁸Pb?

Improvements in storage of 3N matrix elements greatly expands reach of ab initio theory!

Increased E_{3max} range allows first reliable convergence of ²⁰⁸Pb

% TRIUMF

Can We Ever Compute ²⁰⁸Pb?

Improvements in storage of 3N matrix elements greatly expands reach of ab initio theory!

Increased E_{3max} range allows first reliable convergence of ²⁰⁸Pb

Machine learning algorithms sample "all" chiral interactions: 100 000 ²⁰⁸Pb calculations - billions in progress Heat map of neutron skin/ground state energy - constraints on equation of state and neutron stars!

Towards Global Ab Initio Calculations

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

*****TRIUMF

Present and Future

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

Nuclear Structure

Development of forces and currents¹ Dripline predictions for medium-mass Evolution of magic numbers from masses, radii, spectroscopy, EM transitions: ⁷⁸Ni **Multi-shell theory:** Island of inversion² Forbidden decays³

Atomic systems⁴

Data on magic numbers in exotic nuclei 40 **Precision data on GT transitions** S. R. Stroberg* TECHNISCHE H. Hergert **T. Miyagi^{2,3,4,7,8} I.** Morris UNIVERSITÄT INNESSEE B. Hu G. Hagen S. Bogner DARMSTADT C. Gwak^{3,8} T. Papenbrock UNIVERSITY O A. Schwenk J. Menéndez G. Tenkila⁴ BRITISH COLUMBIA I D. Livermore⁴ J. Engel IGU A. Bellev⁵ J. Simonis¹ **C.** Payne⁵ 80 100 120 140 40 60 J. Padua⁶ lassachusetts M. Martin⁷ S. Leutheusser⁶ R. F. Garcia-Ruiz⁸ K. G. Leach MINES

Fundamental Symmetries/BSM Physics

Effective electroweak operators: GT quenching Effective $0\nu\beta\beta$ decay operator⁵ WIMP-Nucleus scattering⁶ Superallowed Fermi transitions⁷ Symmetry-violating moments [molecules]⁸

Experimental overlap

Best data for constraining nuclear forces New measurements of driplines

TRIUMF Future: Evolution of N=28,32,34 Magic Numbers

Ab initio predictions from above calcium towards oxygen – persistence of N=34

% TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

% TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, **CC** calculations of GT transition in ¹⁰⁰Sn from different forces

Large quenching effect from correlations

GT Transitions in Light nuclei and ¹⁰⁰Sn

Ð

NCSM in light nuclei, CC calculations of GT transition in ¹⁰⁰Sn from different forces

Addition of 2BC further quenches and reduces spread in results

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, CC calculations of GT transition in ¹⁰⁰Sn from different forces

Addition of 2BC further quenches and reduces spread in results

Ab Initio GT Decays in Medium-Mass Region

Ab initio calculations of large GT transitions in *sd*, *pf* shells

Bare operator similar to phenomenological shell model

*****TRIUMF

Modest quenching from consistent ab initio wavefunctions and operators

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

Step 1: Decouple core

% TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \dots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

$\langle P H P angle$	$\langle P H Q angle ightarrow 0$
$\langle Q H P\rangle \to 0$	$\langle Q H Q angle$

% TRIUMF

Valence-Space IMSRG

 $\langle P|H|P\rangle$

 $\langle Q|H|P\rangle \to 0$

 $\langle P|H|Q\rangle \to 0$

 $\langle Q|H|Q\rangle$

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \qquad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega}He^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$
$$\tilde{\mathcal{O}} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2} [\Omega, [\Omega, \mathcal{O}]] + \cdots$$
$$\text{Step 1: Decouple core}$$
$$\text{Step 2: Decouple valence space}$$
$$\text{Step 3: Decouple additional operators}$$
$$\tilde{\Psi}_n | P\tilde{H}P | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$$
$$\langle \tilde{\Psi}_n | P\tilde{M}_{0\nu}P | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$
$$\text{Careful benchmarking essential}$$

Valence-Space IMSRG: From Oxygen to Calcium

New approach accesses *all* nuclei: agrees to 1% with large-space methods

Stroberg et al., PRL (2017)

Agreement with experiment deteriorates for heavy chains (due to input Hamiltonian)

Significant gain in applicability with little/no sacrifice in accuracy

The second F

Low computational cost: ~1 node-day/nucleus

Discovery, accelerated

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies (but poor radii)

1.8/2.0 (EM) reproduces ground-state energies through ⁷⁸Ni

Slight underbinding for neutron-rich oxygen

Opens possibility for reliable ab initio predictions across the nuclear chart!

Accesses **all** properties of **all** nuclei:

- Ground states, excited states, radii, electroweak transitions...

Discovery, accelerated