∂TRIUMF

Nuclear Physics: From ISAC to ARIEL

A.A. Kwiatkowski Research Scientist Science Week, 17 August 2020

1

era

ac

ISAC-TRIUMF is a world-class platform for research excellence.

Nuclear-physics program is built around the questions from the Canadian Subatomic Physics Long Range Plan: - Tuesday

Nuclear Structure & Dynamics

- How do quarks and gluons give rise to the hadronic properties and the phases of hadronic matter?
- How does the structure of nuclei emerge from nuclear forces?
- Nuclear Astrophysics
 - How are the elements formed in the Universe?

Precision Tests of Fundamental Interactions

- What is the nature of physics at the electroweak scale and beyond?
- What is the nature of neutrino masses?
- (Franke, Mon)

All RIB experiments within Canada occur at ISAC-TRIUMF.

High-energy experiments focus on reactions & excited states.

C. Andreoiu SFU

R. Kanungo St. Mary's/TRIUMF

P.E. Garrett Guelph

9

IRIS Solid hydrogen target Transfer reactions

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

5

R. Kruecken

C. Ruiz

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

6

High-energy experiments focus on reactions & excited states.

I. Dillmann A. Garnsworthy

> G. Hackman R. Kruecken G. Ball

C. Andreoiu K. Starosta SFU G.F. Grinyer Regina

P.E. Garrett D. Muecher, Th C. Svensson Guelph/TRIUMF

TIGRESS In-flight γ-ray spectroscopy + ancillary detectors/tech.

> BAMBINO DESCANT DSL SHARC SPICE TIP TRIFIC

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

7

High-energy experiments focus on reactions & excited states.

EMMA Mass analyzer for reactions

B. Davids I. Dillmann

A.B. Garnsworthy G. Hackman R. Kruecken

High-energy experiments focus on reactions & excited states.

B. Davids

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

8

Medium-energy RIB experiments are tuned for Nuclear astrophysically important reactions (0.15-1.8 A MeV).

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

Cyclotron

9

I. Dillmann A. Garnsworthy G. Hackman R. Kruecken

G. Ball

G.F. Grinyer Regina

C. Andreoiu SFU/TRIUMF

K. Starosta SFU

P.E. Garrett D. Muecher C. Svesson Guelph/TRIUMF

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

11

GRIFFIN

Decay spectroscopy + ancillary detectors

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

12

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

13

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

14

J.A. Behr M.R. Pearson

G. Gwinner K. Sharma Manitoba

UNIVERSITY OF MANIFORM

ENERGY

Nuclear Astrophysics Fundamental Interactions Nuclear Structure & Dynamics

M.R. Pearson

J.A. Behr

15

G. Gwinner

TRINAT β -v correlations

University Manitoba

JNIUERSITY

Strong collaboration with in-house theorists

Nuclear Astrophysics Nuclear Structure & Dynamics **Fundamental Interactions**

P. Navrátil

 \rightarrow J.D. Holt, Th

16

D.E. Morrisssey

TEC IN SCHE UNIVERSITAT DARAMSTADE

LINIM RSHTY OF

UNIVERSITY OF TRENTO - Italy

SURRE Lawrence Livermore National Laboratory D. McKeen

CAK RIDGE National Laboratory

TU CEA Secley

CENTRAL CRINA NORMAL UNIVERSITY

CHALMERS

IN2P3

CINIS

nstaut de reelferche ar les ois luncamentales

ARIEL's multi-user capabilities will empower experiments in nucl. structure, nucl. astrophysics, & fundamental symmetries.

proton spallation yields in uranium target

photo-fission yields in uranium target

 \rightarrow A. Gottberg, Th

TRIUMF's nuclear astrophysics program in the era of multi-messenger astronomy

GRIFFIN + ARIES

TITAN

DESCANT

TUDA, IRIS, GRIFFIN, TIGRESS

EMMA, IRIS, TUDA, TIGRESS+SHARC

GRIFFIN +LaBr₃ or DSL; EMMA+TIGRESS+SHARC

DRAGON, TUDA, EMMA

β-decay half-lives β-decay branching ratios γ -decay branches β-delayed neutron strengths Level Energies **Spins & Parities Spectroscopic Factors Elastic Scattering Phase Shifts** Level Lifetimes Partial Widths **Direct Cross Sections**

Nuclear Masses

Reaction Q-values

Particle Separation Energy

Effective Nuclear Lifetimes

Reaction Cross Section

Reaction Flow in Stellar Environment

Top Research Highlights

- 7s →8s transition of francium measured & compared to ab-initio theory, FrANPC, PRA 2018
- The proton dripline at the N=8 shell closure, IRIS + theory, PRC 2019
- Direct measurement ¹⁷O(α, γ) & impact on heavy nucleosynthesis, DRAGON, PLB 2019
- Shape coexistence in neutron-deficient Pb isotopes, GRIFFIN, PRC 2019
- 1st measurement of Gamow window of ⁷⁶Se(α,γ) for γ-process, DRAGON, PLB 2020.
- Masses of neutron-rich Ga and neutron-star merger calculations, TITAN, PRC 2020
- Development of time-reversal test in beta decay, TRINAT, DAMOP 2020
- L/K capture ratio of ⁷Be directly measured, BeEST (Colorado School of Mines), PRL 2020
- CoulEx of A=23 mirror pair & systematics of ab-initio E2 strength, TIGRESS + theory, arxiv 2020
- β decay of ¹³²In and Spectroscopy of ¹³²Sn and ¹³¹Sb, GRIFFIN, accepted in PRC
- Spectroscopy of ⁸He and new N = 6 shell , IRIS + theory, submitted
- Magicity of neutron-rich Sc at N=34, TITAN + theory, submitted to PRL

Nuclear Astrophysics Nuclear Structure & Dynamics Fundamental Interactions

← Franke, Mon← Leach, Th

Reaction Spectroscopy @ IRIS

N = 8 shell @ proton drip-line (²⁰Mg)

N = 6 shell @ neutron drip-line (⁸He)

Deformation discovered in ⁸He

M. Holl, R. Kanungo, et al. submitted to journal

Search for 0₂⁺ state in ⁹⁴Kr

- ⁹³ Kr(d,p) reaction first study
- only ~200 pps: pioneering accomplishment of lowenergy reaction with such low-intensity radioactive ion beam

D. Walter, et al. in preparation

Regina Cube for Multiple Particles (RCMP)

Beam

- New auxiliary detector for GRIFFIN
 - Charged particle detector
 - α decay and β delayed particles
 - Multiple particles (β2p, βαp, …)
 - Nuclear structure and astrophysics
- 6 DSSD detectors (micron BB7)
 - Active area: 64 x 64 mm²
 - 6 x (32+32) strips = 384 channels
 - Thickness: 1mm (12 MeV protons)
 - Geometric efficiency ~80%
 - Fits inside GRIFFIN target chamber
- CFI JELF Project (Regina)
 - Gwen Grinyer (PI)
 - Total award: \$130k
 - Anticipated completion: 2022

A major upgrade of the SCEPTAR beta-tagging array for GRIFFIN

Victoria Vedia, Rashmi Umashankar, Adam Garnsworthy, Max Winokan, Kurtis Raymond Miles Constable, Daryl Bishop (Electronics design), Shaun Georges (Mechanical design)

New ARIES beta-tagging array enables:

- Counting of high source activities ~20MBq with ~90% solid-angle coverage.
- Beta-gamma angular correlations with >50 unique angles.
- Beta-gamma fast coinc. timing (few ps) with LaBr₃(Ce) detectors (x2 eff. increase over ZDS).
- Easy and economical replacement of detectors contaminated with long-lived activity.

Geometry optimized for GRIFFIN with 1 beta paddle for each HPGe crystal, + 8 triangles + 4 downstream = (36 US)+(40 DS) = 76 total channels

- 1.5mm thick BC422Q ultra-fast plastic scintillator.
- Laser-etching to optically-segment scintillators and prevent light loss.
- Light read-out using SiPM sensors printed on flexible circuit board ~50µm thickness and held in place with a 3D-printed support structure will provide energy and fast-timing signal.
- Processing using 500MHz, 12-bit digitizers in the GRIFFIN DAQ.

First experiments anticipated in 2022

Slide courtesy of A. Garnsworthy, TRIUMF, Aug. 2020

Prototype preamplifier electronics build and tested.

DRAGON: from Big Bang Nucleosynthesis to supernovae

- Direct meas. in Gamow window for ²²Ne(α,γ) (557 keV resonance)
- ωγ(704keV) ~3x lower than literature

First direct (a,n) measurement with recoil separator!

 (α, n) strength for E_x=11.32 MeV resonance is a key uncertainty in ²²Ne(α, n)²⁵Mg rate at stellar temp.

- $^7Be(\alpha,\gamma)^{11}C$ (collab. with McMaster Univ.)
- Investigated effect on p-nuclei production in core-collapse SN
 First direct meas. of 2 resonance with previously unknown strengths
- Significantly reduced reaction rate uncertainty at vp-process temperatures!

³He+a with SONIK

(collab. With Colorado School of Mines & Ohio Univ.) $^{\rm 24}$

- ³He(α,γ)⁷Be: Key reaction in BBN & solar ν physics
- Elastic scat. cross-sec. essential for theoretical & phenomenological understanding of ³He(α,γ)⁷Be

 9 energies, including lowest energy at E_{cm} = 0.4 MeV thus far

DRAGON & TUDA: from this 5YP into the ARIEL era

- DRAGON → unique versatility and sensitivity... currently the only fully-operating astrophysical recoil separator at a RIB facility
- Currently, either:
 - 1. -Pioneering measurements. i.e. low-signal, largeuncertainty measurement of reaction hitherto inaccessible (weak RIBs, low energy stable beam) or
 - 2. -Precision measurements, i.e. high intensity stable beam, smaller more controlled systematics than normal kinematics
- (1) is considered 'incomplete' reaction study → future study needed
- Limitation is *beam-time competition* (1-2 weeks RIB per year.. Only enough time to measure one (dominant) resonance)
- ARIEL 3x beam will make possible RIB experiments of several weeks:
 - → complete, comprehensive measurements of (p,γ) (α,γ) reactions with reduced systematics
 - → highly competitive with underground facilities, almost matching luminosity with high-intensity SIB + superior background rejection

Near future: (5YP)

- Addition of LaBr₃ array to improve DRAGON sensitivity 10-fold (determine resonance energy, required precisiod, 10x less statistics)
 - \rightarrow Also used as ancillary detectors in TUDA and EMMA \rightarrow G. Christian, Th for other astro ancillary detectors
- Usage of GRIFFIN HPGe clovers @DRAGON enable low-energy measurements disentangling nuclear structure effects, e.g. *proton halo subthreshold states*
- Beam time arguments also apply to TUDA, SONIK facility, where experiments are limited simply by integrated beam on target → enhanced reach, sensitivity
- Note: CANREB promising to enable massive beams to DRAGON, e.g. ^{35,37}Ar → Opens up *rp*-process studies

Emergence & quenching of N=32,34 shells shells via TITAN mass spectrometry of Ca, Sc, Ti, and V.

Nucleons occupy stable configurations (shells)

which may evolve as Z/N grows unstable.

TITAN mass-spectrometry upgrades are focused on sensitivity and precision.

Multi-Reflection Time-Of-Flight Mass Separator

- Non-scanning \rightarrow sensitivity
- Broadband → more measurements/time
- MRS & "re-trapping" technique → better purification
- δm/m ~10⁻⁷, ioi/cont. ~1:10⁵, sensitivity <0.01 pps

Measurement Penning trap

- Implementing new phase-imaging ion-cyclotronresonance technique → precision, resolving power, sensitivity
- Cryogenic upgrade for longer measurement times at high charge states for both techniques
 → precision, resolving power
- Present: $\delta m/m \sim 10^{-9}$, ioi/cont. $\sim 1:10^{3}$, sens. ~ 10

MR-TOF: S. Beck, et al., in preparation; A. Jacobs, MSc, UBC 2020; E. Dunling, PhD work; MR-TOF spectrum: E. Leistenschneider, submitted to PRL; MPET: E. Leistenschneider, PhD, UBC 2019; M. Lykiardopoulou, PhD work; PI-ICR image: S. Eliseev, *et al.* PRL 110 (2013) 082501

28

Nuclear physics at ISAC is at the forefront.

- State-of-the-art experimental facilities investigate and, with ARIEL, will push the boundaries to study
 - Unified theory of nuclei, evolution of nuclear shells, 3N forces, etc.
 - Reactions along the proton and neutron driplines @ IRIS
 - Masses at N=32,34 @ TITAN
 - Nucleosynthesis from H burning to r-process, multi-messenger astronomy
 - Reactions to probe element production from Big Bang to core-collapse supernovae
 @ DRAGON
 - Precision tests for physics beyond the Standard Model → Franke, Mon
- Breakthroughs are facilitated through continued interplay between cuttingedge experiments and theory.

Preparations for the ARIEL era are underway.

- Experimental upgrades are being completed or developed to achieve
 - Higher sensitivity
 - Higher-rate capabilities
 - Reduce systematics
 - Improved detection systems: EXACT-TPC @ IRIS, ARIES & RCMP @ GRIFFIN, PI-ICR @ TITAN, neutron det. @ TUDA & EMMA ← G. Christian, Th
 - Polarized beams Dunsinger, Wed

Nuclear-physics experiments need

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

