% TRIUMF

Status and Plans of Materials Science at **TRIUMF**

Kenji M. Kojima Research Scientist, CMMS, TRIUMF Science Week, August 17-21, 2020

1

- TRIUMF hosts the world's only radioactive nuclear beam resonance facility for thin-film and interface research.
 β-NMR
- TRIUMF is the sole facility in the Americas that provides muon spin relaxation spectroscopy for quantum and chemical systems. µSR
- TRIUMF materials science program is well established and provides critical complementary research probes to Canadian and International experimenters.

Users

2

℀TRIUMF

Centre for Molecular and Materials Science (CMMS)

Seven Faculty and Scientists, Three Technicians, collaborate to

perform individual research,

•

- contribute to training and teaching,
- support user experiments and technical projects,
- operate and advance the research infrastructure.

Students join the CMMS for work experiences and training.

Seven Canadian university faculty affiliated with TRIUMF.

Three TRIUMF faculty affiliated with Canadian universities.

RIUMF

CMMS facility and location in TRIUMF

µSR: available at M15 and M20 in Meson Hall, 150 days / year simultaneously

FUTURE: M9H and M9A will be completed for measurement in extreme conditions and user community expansion. M9H is CFI approved: (Kreitzman, Thursday).

 β -NMR stations in ISAC-I building, 35 days / year

- FUTURE: ARIEL will expand the beam availability of β -NMR by 3~5 times (5 => 15~25weeks).
- > POLARIS (Dunsiger, Wednesday) aims to maximize utility of beams made available by the ARIEL sources.

μSR

Discovery, acceleratec

% TRIUMF

CMMS history at large

- 1983: First demonstration (M20) of a dedicated facility based surface muon beam line. (Ken Kendall, Jess Brewer, Jaap Doornbos, Jack Beveridge)
- 1985: Building of M15, with its dual achromatic spin rotators This became the de-facto model for all the worlds subsequent bulk material muon channels (excepting decay muons).
- 1988: Building of M9B by the Tokyo group (Nagamine and Co.) with Kakenhi
- 1998: Introduction of the βNMR facility in ISAC
- 1999: Invention/introduction of the High Transverse Field (7T) / High-timing resolution MuSR spectrometer
- 2003: Invention/introduction of a spin-rotated high energy decay μ+ beam (M9B).

2005: CFI Funds rebuilding of M20 into a modern MuSR beam line

2009: TRIUMF Funds the building of M9A

- + my own history 2012: First experiments on the rebuilt M20 C/D surface muon beamline.
 - 2013: TRIUMF saves the CMMS & UCN programs by funding a M-Hall He liquefier
 - 2016: CFI Funds the rebuilding of M9B/H into a versatile decay MuSR beam line
 - 2020: current 5-year plan

(high- $P \mu^+$ or negative μ^-)

5

RIUMF

Muons from T2 target: **M9 and M20**

Expansion to new M9A/H

Discove 2020.08: new M9Q1&2 installed and Vacuum being checked !

Alannah Hallas's talk on Wednesday on other Quamtum Materials

Pressure capability:

TRIUMF has mapped out phase diagram of quantum materials with μ SR as a magnetic probe.

Instead of Chemical pressure by element substitutions, real pressure may be used as the controlling parameter.

9

J-PARC pulsed µ⁻ facility is limited to 25Hz. TRIUMF will be able to measure in kHz.

RIUMF β-NMR vs. µSR

Nuclear Magnetic Resonance of implanted probes

Muon (~10µsec) and ⁸Li (~10 sec) maximum time scales

β-NMR stops probe particles in nano-meters with controlled depth

+e charge, S=2 polarized ⁸Li+

Muon +e charge, S=1/2 polarized, 1/9 Hydrogen mass = spin polarized proton isotope, simulates Hydrogen

β-NMR

11

\∽/

0.35

℀TRIUMF

More β -NMR beamtime with ARIEL in operation

ARIEL will enhance the β -NMR beamtime by 3-5 times (35 days / year to 100-150 days /year), because it feeds the competing Medium and High Energy part of ISAC-I & II.

More β -NMR user programs will be accommodated.

Variety of probe nucleus is explored: ⁸Li, ³¹Mg, Cu, ...

∂TRIUMF

β-NMR: Detector system upgrade for high-rate competency SiPM + hardware (developed at KEK)

Kenji Kojima

Jack deGooyer (Dalhousie)

Hardware

Hans-Ulrich Berendes (Friedrich-Alexander University, Germany)

DAQ Software (with Ben Smith)

Expansion of Polarized unstable nuclei facility: POLARIS

+ new unique sample environments with more efficient use of the beam through multiplexing

Sarah Dunsiger (Talk on Wednesday)

Discovery, accelerated

13

℀TRIUMF

2020~: User facility in COVID era

We are trying a new model of collaboration this Summer-Autumn beamtime: Experiments without having external scientists visiting on site.

- (1) Samples mailed in and internal scientists sets up the measurements in person
- (2) Online communications during the measurements with external scientists.
- (3) Remote access to the experiment and Autorun have been running.

Web cams to monitor the apparatus

An extreme example of remote access

14

Summary

- > ARIEL will expand β -NMR beam availability.
- > Our initiatives in 5YP 2020- and future (CMMS):
 - Expanding Muon Beam Facilities at TRIUMF: M9A & M9H (CFI grant: J. Sonier (SFU))
 - Muonic X-ray spectrometer for elemental analysis ... (I. McKenzie)
 - M15 Revitalization and Upgrades in Meson Hall (S. Kreitzman)
 - Expansion of the β-NMR and other unstable nuclear beam usage, POLARIS (S. Dunsiger + life science + nuclear science + accelerator)
 - CMMS user programs will be COVID resilient
- > Proton Beamline 1A Modernization is necessary for sustainable operation.

With the CMMS infrastructures, various materials and molecular systems will be investigated, including Quantum Matters, Soft Matters and Radicals, etc