Polarised Radioactive Isotope Science (POLARIS) at TRIUMF

TRIUMF Science Week 19 August 2020

Comparison of Spin Resonance Techniques

	NMR	Bulk μSR 8Li βNMR	
Polarisation	<0.1	>0.8	
Detection	Electronic pickup	Anisotropic β decay	
Sensitivity	10 ¹⁷ spins	10 ⁷ spins	
T_1 range (s)	10⁻⁵-10 ²	10 ⁻¹¹ -10 ⁻⁴ 10 ⁻³ -10 ³	
Range	0.5 mm	0.5 mm 5-300 nm	a=1/3

 ${}^{8}\text{Li}^{+} \rightarrow {}^{8}\text{Be}^{2+} + e^{-} + \nu_{e}$ Lifetime=1.2 s

β-NMR Experiments at ISAC, TRIUMF Current Configuration

Osaka

Unpolarised Li⁺ is neutralised by charge exchange in Rb vapour. Neutral Li is optically pumped with circularly polarised light. Remaining charged fraction is deflected (removed) electrostatically. He gas strips one electron to yield spin-polarised Li⁺ ion. Polarised ion beam is delivered, flipping helicity via ½ wave plate. Scheduled switching @ 0.1 Hz

Low field / Zero field Spectrometer

2nd downstream endstation - Zhongyuan Yao SRF R&D

8Li Resonance Spectra and Spin-Lattice Relaxation – Long Pulse Technique

R M L McFadden et al, Phys Rev B 99, 125201 (2019)

Topological Insulators : New Electronic State of Matter with Spin Transport Applications

a) $Bi_{2-x}Ca_xSe_3$ Fermi-surface map measured by spin-resolved, angle resolved photoemission spectroscopy b) Surface bands intersect at a "Dirac point" within the bulk band gap

D Hsieh et al, Nature 460, 1101 (2009)

Spin Rotation Symmetry Breaking in the Superconducting State of Cu_xBi₂Se₃

d

K Matano et al, Nature Physics 12, 852 (2016)

Proposed Layout in ISAC-1 Hall

OSAKA / Bio-BetaNMR :

dedicated β -NMR spectrometer for liquids and high vapour pressure applications, focussing on systems of biochemical and medical relevance; chemical Shift Measurements by ³¹Mg, ⁵⁴Cu, ⁷⁴Cu, ⁷⁵Cu, ²³⁰Ac, ²³²Ac β -NMR

North South Footprint : Nuclear Structure and Symmetry 2x2.5 m footprint for modular experiments including resonant ionisation decay-spectroscopy;

East West Footprint : Physical Science dedicated 2.5x3 m high voltage platform, 0.1-30 keV ions radio frequency spin echo and adiabatic inversion vector magnet (0-2 Tesla || beam, 0-0.5 Tesla ⊥ beam) 1.5-300 K closed cycle cryostat

GRIFFIN : Nuclear Structure and Symmetry 3 m low energy polarised beam transport

POLARIZER beamline and Laser Upgrade

Spin Manipulation at Radio Frequencies (SMuRF)

Dunsiger,

Magnetic field at sample position

Radioactive ion spin rotation via Wien Filter (0.7 Tesla, 5600 V cm⁻¹, 0.2 m effective length)

(Design Note TRI-DN-01-5)

Longitudinal and Transverse detectors

Closed cycle vector superconducting magnet (0-2 Tesla⊥ film surface; 0-0.5 Tesla∥ film)

Magnetic field norm [mT]

10²

10¹

10⁰

L0⁻¹

-0.5

Adiabatic Spin Rotation on VITO Beamline **ISOLDE**

W Gins et al, Nuclear Inst. and Methods in Physics Research, A 925, 24 (2019)

Transitional field on

Both on

-0.4

Rapid Switching of Beam and Helicity Quasi continuous Beam on Three Channels

Proposed set-up identical to ILT:YCB3 plates into and out of TITAN. Routine pulsing at > 1kHz with 50:50 duty cycle

Feasibility of Micro Beam Envelopes

Simulated beam profile for 1000 eV implantation energy (decelerated from 30 keV) through a solenoid at 2.4, 4.7, 8.0 Tesla. The sample position is at a distance of 0 m. Note the envelope has a series of nodes. The minima in envelope are of radius a = 150 μ m laterally in the x-y plane. (R Baartman, TRIUMF).

³¹Mg β-NMR of MgCl₂ in EMIM-Ac and EMIM-DCA Stachura

40 min

time of exp.

72 hours

D. Szunyogh, et.al. Dalton Trans. 2018, 47, 14431-14435.

New bio-β-NMR Spectrometer at TRIUMF including Differential Pumping System

Commercial 7T superconducting magnet: 1 ppm homogeneity over 84 mm Enable experiments between 230-365 K at pressures > 30 mbar (compatible with liquids)

- Three-stage system with four apertures of 4 mm (P1, P2, P3, and P4)
- Apertures fixed in length and size (4-5 mm); adjustable position

Pressure distribution simulated using Molflow+ - E Kallenberg

The World's Rarest Drug

The Rarest Drug on Earth – A documentary from Vancouver-based Avocado Video, presented as part of TELUS' STORYHIVE initiative

- Probe site coordination geometry: types, number and geometric arrangement of coordinating atoms
- Allow for experiments at physiologically relevant concentrations
- Relative population (if several probe sites are present)
- Probe site dynamics on a ms timescale (exchange dynamics, molecular reorientational correlation times)

Isotope	Half-life [s]	Spin	Decay mode	Magnetic moment [u _N]	Quadruple moment [b]	Yields [1/s]		
²³⁰ Ac	122	+1	β ⁻ (100%)	unknown	unknown	3·10 ⁴ *		
²³² Ac	119	(+1)	β ⁻ (100%)	unknown	unknown	1·10 ⁴ *		

* The provided yields were measured using Re surface ion source. Yields of e.g. ²²⁵Ac measured in Dec 2016 and Sep 2018 showed, however, an order of magnitude increase in yields when using TRILIS. This enhancement has also been showed for other measured isotopes.

Gamma Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN)

Rajabali, Garnsworthy

The asymmetry parameter A is a constant depending on the daughter state spin value. Spin polarization is measured by counting the beta decay along the orientation axis.

Revised β Decay Scheme 30Na \rightarrow 30Mg

 $I^{\pi} = 2^+$ 0.0 $T_{1/2}^- = 48(2)$ ms

³⁰Na

Collinear Fast-Beam Laser Spectroscopy

Individual half lives of a ground and isomeric state of 98, 98mRb

Accepting light signals whose timing coincides with the presence of an ion "bunch," the background signal due to laser scattering and "dark counts" in the photomultiplier is greatly suppressed

Present System : optical pumping 8Li (I=2); 9,11Li; 31,32Na

Present System : optical pumping 31Mg+ (I=1/2)

2. universal wavelength coverage

22

New Capabilities with Second Generation Lasers

Key performance indicators over a five-year period for the CMMS

	Publications		Citations		Experiments		Highly Qualified Personnel					Theses	
	μSR	β-NMR	μSR	β-NMR	μSR	β-NMR	Canadian In		Interr	nternational			
Year							PDF	MSc PhD	U	PDF	MSc PhD	U	
2014	45	8	408	36	50	17	6	31	6	15	28	1	7
2015	23	5	356	81	59	16	4	19	8	12	24	2	5
2016	25	1	426	18	59	18	6	22	8	14	34	3	5
2017	12	5	362	58	43	14	3	22	2	11	33	3	7
2018	20	1	443	28	42	12	4	21	3	14	34	2	4

Highly successful low energy μ SR program available at the Paul Scherrer Institute:

*61 associated publications between 2014-2018

(14 in high-impact factor journals (Nature journals, PNAS, PRL, ACS nano))

*typically 170 instrument days per year.

*166 individual visitors (375 visits); oversubscription rate 2.2, on average

It is anticipated an expanded β -NMR facility offering a complementary technique with comparable available beamtime will enjoy a similar level of activity.

Cate Notification Reprised to no <

CFI-IF 2020 application

R Kiefl, University of British Columbia – Principal Investigator University of Alberta, McMaster University, Université de Sherbrooke

TRIUMF Hopes and Dreams

Dramatically expand the β -NMR facility at TRIUMF, broadening our scientific community

Offer unique sample environments for experiments on Quantum Materials and Devices, polymers, battery materials, defects in semiconductors, aqueous solutions of biochemical and radiopharmaceutical relevance

Expand the range of polarised ions and atoms available for fundamental investigations of nuclear structure and symmetry

Keep your fingers crossed!