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Source: Gartner

Many relevant for us!
● General AI
● Neuromorphic 

Hardware
● Explainable AI
● Edge AI
● Quantum 

Computing
● Conversational UI
● DNN
● Graph Analytics
● NLP
● FPGA accelerators
● Computer Vision
● GPU accelerators
… + more :)
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Goal: make the hype cycle for ML in Science

How: look at science and technology frontiers for 
ML application development in science

SCIENCE!



Machine Learning Discoveries
Impactful Scientific Applications in 5, 10, and 20 years
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Outline

1. Machine learning for scientific experiments

2. Advancement in eco-systems around ML

3. Hype cycle in science 



Landscape: where ML applied?
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ML for Science Experiments

6

Facilities:
detector,
accelerator,
...

Simulator
Synthetic 

data

Physics
Extraction

Real data

Target Physics 
… and nuisance



Machine Learning Discoveries
ML for Science Experiments

7

Facilities:
detector,
accelerator,
...

Simulator
Synthetic 

data

Physics
Extraction

Real data

Target Physics 
… and nuisance

Optimization 
of design + 
control

Invertible 
simulator for 
physics extraction

Edge-ML for smart 
triggers / online analysis

Fast-ML / smart sampling

Physics-informed ML and UQ
For physics extraction

Landscape: where ML applied?
● Experiment design optimization
● Facility control / DAQ
● Simulation & analysis
● Physics extraction
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Ingredient: physics modeling = simulator

Goal: optimize the configuration parameters to 
optimize an objective function for design metrics

Challenge: simulator complex and expensive
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● NN surrogate: fast cheap simulation

○ Genetic algorithm (GA) with NN surrogate 
v.s. physics simulator for accelerator design 
optimization study.

○ 36 hours on HPC with a physics simulator

○ 2 minutes on laptop with NN surrogate
■ +17 minutes simulation + training 

○ Phys. Rev. Accel. Beams 23, 044601 (2020)
~95k core hrs, 
66,000 simulations, 
36 hours walltime

Neural Network:
~2mins on a laptop
500 simulations for 
training

https://arxiv.org/abs/1903.07759
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● NN surrogate: gradient optimization

○ Generative NN surrogate to approximate the 
stochastic gradient of true simulator 
(non-differentiable), which enables direct 
optimization using back-propagation

○ arXiv:2002.04632... promising initial work!
■ … with a comparison to other methods (Bayesian 

optimization using Gaussian Process, etc.) 

○ Future directions: how does it scale for a 
large system? Would it be stable?

■ Could we make differentiable simulator?

https://arxiv.org/abs/2002.04632
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Ingredient: physics modeling = simulator

Goal: optimize the configuration parameters to 
optimize an objective function for design metrics

Challenge: simulator complex and expensive

Take aways
● Stochastic simulation (e.g. particle scattering) = non-differentiable 

likelihood often intractable to use directly for optimization
● ML surrogates for black-box (simulator) optimization as an alternative

○ Also applicable: Bayesian optimization using GP (later), likelihood free 
inference (later), etc. but less used for design optimization

● Let’s take a good design = less $$ more science!
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Ingredients: accelerator, detector, DAQ, monitoring systems

Goal: improve the detector/facility operations and data quality

Challenge: active systems = speed and efficiency are the keys!
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Bayesian optimization (e.g. Gaussian Process) for efficient tuning

Figures courtesy 
of Gilles Louppe 
(PyData 2017)

Courtesy of Joe Duris (ML-at-SLAC 2019)

● Tuning of quadrupole magnet at LCLS

○ Probabilistic model = interpretability

○ GP v.s. “Hand-tuning” = x 2~3 times faster
■ Phys. Rev. Lett. 124, 124801

○ LCLS “hand-tuning” (not only quadrupole) time 
~400 hours/year, $12M!

https://orbi.uliege.be/bitstream/2268/226433/1/PyData%202017_%20Bayesian%20optimization%20with%20Scikit-Optimize.pdf
https://orbi.uliege.be/bitstream/2268/226433/1/PyData%202017_%20Bayesian%20optimization%20with%20Scikit-Optimize.pdf
https://indico.slac.stanford.edu/event/91/
https://link.aps.org/doi/10.1103/PhysRevLett.124.124801
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Anomaly detection for finding false beam position monitor (BPM) signals

● Standard method (Single Value Decomposition = SVD) removes most of faulty BPM 
measurements at LHC but not all!

● Isolation Forest (IF, unsupervised method using binary trees) removes the majority

● Elena Fol et al. ICPF 2019

http://accelconf.web.cern.ch/ipac2019/papers/wepgw081.pdf
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High data throughput GPU-based trigger system (LHCb)

Image from LHCb TDR

● arXiv:1912.09161

● 500 GPUs for collision rate @ 30 MHz = ~40 Tb/s

● Key element: data bandwidth

○ FPGA (next slide) for predictable latency

http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
https://arxiv.org/abs/1912.09161
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ML on FPGA @ Linear Coherent Light Source 
● Data rate 20 - 1200 GB/s at 1 MHz beam rate

○ 10 kHz at early LCLS-II

● Pipelined MLP on FPGA = 19.3 micro-seconds latency @ 
77 kHz throughput, more architectures tested (see a talk 
by Audrey T. and Ryan C. at DANCE-ML 2020)

HLS4ML = (Physicists + ML)/FPGA
● Automatic translation of open-source ML 

model to HLS + compile on FPGA
● Meant to be generic, reusable framework

https://indico.physics.lbl.gov/event/1192/contributions/4944/attachments/2337/3027/Therrien_Coffee_DANCE-ML2020.pdf
https://indico.physics.lbl.gov/event/1192/contributions/4944/attachments/2337/3027/Therrien_Coffee_DANCE-ML2020.pdf
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Ingredients: accelerator, detector, DAQ, monitoring systems

Goal: improve the detector/facility operations and data quality

Challenge: active systems = speed and efficiency are the keys!

Take aways
● Probabilistic models for operations support
● Efficient sampling (Bayesian optimization) for fast turn-around
● Anomaly detection 
● Edge/Fast-ML to bring high level analysis to the detector
● Active learning: could we learn from data online?
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Ingredients: large, multi-modal detector big data

Goal: extract physics signal

Challenge: irregular data structure, interpretable high quality analysis
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● Data structure: sparse images, point cloud data, detector geometry
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● Symmetry: cylindrical/spherical detector, ML with SU(3), etc.

Image from 
Aobo Li’s talk (NPML 2020)

https://indico.slac.stanford.edu/event/377/contributions/1151/attachments/477/715/kamdl.pdf
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● Interpretability: hierarchical, compositional structure

ML for end-to-end multi-stage reconstruction 
enforce inductive bias and make analysis output 
interpretable with hierarchical/sequential evidence 
finding
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● Interpretability: inductive bias / causal structure

Image taken from IRIS-HEP

QCD-aware NNs incorporating 
interactions in trees and graphs

https://iris-hep.org/projects/ml4jets.html
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● Interpretability: uncertainty quantification = probabilistic approach
○ Model uncertainty and input systematic propagation
○ Systematic uncertainty for mismodeling of physics

Standard Neural Network Bayesian Neural Network

Natively designed methods: Bayesian NN, probabilistic programing, etc.
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● Interpretability: uncertainty quantification = probabilistic approach
○ Model uncertainty and input systematic propagation
○ Systematic uncertainty for mismodeling of physics

Natively designed methods: Bayesian NN, probabilistic programing, etc.
… or solve inverse problem + simulator: Likelihood free inference

Slide by Kyle Cranmer (Hammer & Nails 2019)

● Likelihood intractable: ways to approximate (e.g. 
generative model to “learn simulation”)

https://www.dropbox.com/s/aib14yp4dpgo7qv/Kyle%20Cranmer_Hammers-Nails-2019.pdf?dl=0
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● Learning from data: unsupervised generative models

“Learning Hyperbolic Representations for 
Unsupervised 3D Segmentation” 
talk by Joy Hsu (AI-at-SLAC seminar)

Images from a talk by Frederic P. and Nina M. (DANCE-ML 2020)

https://confluence.slac.stanford.edu/display/AI/AI+Seminar?preview=/213897042/282432144/slac%20ml%20seminar.pdf#AISeminar-LearningHyperbolicRepresentationsforUnsupervised3DSegmentation
https://indico.physics.lbl.gov/event/1192/contributions/4935/
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Ingredients: large, multi-modal detector big data

Goal: extract physics signal

Challenge: irregular data structure, interpretable high quality analysis

Take aways
● Science-informed ML is very active frontier of development

○ Domain-specific nature of data from multi-modal detectors
○ Enforcing symmetry and physics laws in architecture

● Interpretability
○ Enhance our knowledge: hierarchical, compositional, causal structure
○ Uncertainty estimation = intersection of ML and statistical methods
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Experiment
Proposal

Building and 
Installation

Experiment
Design (Simulator)

Facility
Control

Physics
Extraction
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Facility Operation
Data Taking

Data Analysis
Physics Inference

Experiment
Proposal

“Load all the wires from this event, loop over 
each one, find all the hits over the noise 

threshold, fit a gaussian to each, and save 
them as hits” and get a parallelized, 

compiler-friendly hitfinder out of the box.



Computing
● Exa-scale HPC: next year!

○ GPU+CNN was only 8 years ago
○ ML on FPGA only a few years ago
○ … today’s HPC on my laptop in 20 years?
○ “ASCI White” @ LLNL 

■ 12.3 TFLOPS: fastest supercomputer (2002)
■ Today: NVIDIA 2080Ti 14 TFLOPS

● Advancements solely by computing?
○ Huge leap of performance without advancement
in algorithm expected (e.g. OpenAI GPT-3)

Machine Learning Discoveries
Eco-systems around ML
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Distributed Machine Learning

Machine Learning Discoveries
Eco-systems around ML
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Data distributed training
arXiv:1712.05878

Model distributed training
T. Kurth et al. (SuperComputing 18)

https://arxiv.org/abs/1712.05878
https://pasc18.pasc-conference.org


Evolving co-processors
● How do we design our “compute center”
● How to utilize LARGE #cores in a chip?
● How to benefit HUGE memory?

Machine Learning Discoveries
Eco-systems around ML
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Xilink FPGA

NVIDIA GPU

Cerebras
“Big chip”Google TPU custom ASIC



Eco-system
● How do we train new generations? No, how do we train ourselves?

○ Courses/workshops to be standardized in a wider community
● How to best foster academic/industrial research collaboration?

○ Funding support, open development with public benchmark data
● ML-in-Science = own field? (academic degrees, career path)

Machine Learning Discoveries
Eco-systems around ML
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Slides by Savannah Thais 
(Snowmass ML group 
workshop)

https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf
https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf
https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf
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Distributed ML

Science-aware ML

Generic AI

HPC on laptop

Causal/Hierarchical 
Structures

ML for design 
optimization

ML for physics 
inference

Edge-ML in Science ML for physics 
inference
… w/o uncertainty

Single-GPU workflow

ML facility control

ML training 
for scientists 
+career path

Quantum ML
…not in this talk 
but review here

ML-integrated workflow

~5 years 

~10 years 

~20 years 

This view is on my own, no blame on those 
many people I quoted in my slides!

https://arxiv.org/abs/2005.08582
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THANK YOU 
for your attention!

Questions?
(do I have time?)

My daughter, who knows 
“20 years later”?

She’ll be done being a 
teen-ager, though! ;)


