TRIUMF at the precision frontier

Beatrice Franke Research Scientist, Ultracold Neutron Group

TRIUMF Science Week August 17th, 2020

Discovery accelerati

There is still a lot that we don't understand:

Image credit: NASA / GSFC

- metry preaking force particles 2.4M 1.27G charge 26.89 Dark Matter С color charge (r,g or b) U mass (eV) 125-6G charm Ordinary Matter 4.9% d S D g aluon bottom down strange 68.3% Dark Energy 0.511M 105.7M е photon electron < 2.2 < 0.17M < 15.5M \mathcal{V}_{e} \mathcal{V}_{μ} V_{t} W+graviton e-neutrino **U**-neutrino t-neutrino
- What is the origin of neutrino masses?
- Why is there so much more matter than antimatter?
- What is dark matter?
- How to solve the hierarchy problem?
- Why does time have a direction?
 2020-08-17

era

COV

C

Outline

Particle Physics at TRIUMF participates in the following research topics:

- High Energy Frontier
- Neutrinos and Dark Matter
- Precision Tests of Fundamental Interactions
- Overlap with Nuclear Physics at the Fundamental Symmetries front

Status update of our activities during current 5YP

 This talk will cover the Precision Frontier, while the talks in the next session will cover projects in astro-particle physics, as well as accelerator based particle physics

5

FrPNC

Atomic parity violation (APV) test with laser trapped francium

- Z-boson exchange between atomic e⁻ and quarks
- Previously measured in Cs, effect in Fr 18 x larger -
- ²¹¹Fr isotopes from TRIUMF's ISAC, 3min half-life
- Sensitive to beyond standard model physics such as: leptoquarks; extra heavy bosons (eg. Z'); light, dark bosons

Parity violating (PV) e^- – quark coupling constants $C1_u$ and $C1_d$ Important parameter of weak interaction (Weinberg angle θ_W) Strongly improved constraint on C1 parameter space! from: Carlini (Qweak presentation), PANIC 2017

 $\begin{array}{ll} q_{up}: & 2 \ C_{1u} = +1 - 8/3 \ \sin^2\!\theta_W \\ q_{dn}: & -2 \ C_{1d} = -1 + 4/3 \ \sin^2\!\theta_W \end{array}$

²⁰²⁰⁻⁰⁸⁻¹⁷ Material courtesy of G. Gwinner

6

FrPNC

Atomic parity violation (APV) test with laser trapped francium $|A_{stark} + A_{M1} + A_{PV}|^2$

- $< n's' \mid H_{PV} \mid np > \propto Z^3$ (Bouchiat, 74)
- PV (parity-violating) interaction mixes electronic s & p states
- Previous work (Wieman @ NIST Boulder) relies on Cs atomic beam; high flux needed (10¹³ s⁻¹ cm⁻²), each atom used once
- Re-using atoms in trap: APV is possible with $10^6 - 10^7$ atoms $\rightarrow 10^6$ fewer atoms
- Signature: drive strictly forbidden $s \rightarrow s E1$ transition
- Laser trapping in a MOT, trap lifetime ~ 20 s

²⁰²⁰⁻⁰⁸⁻¹⁷ Material courtesy of G. Gwinner

TRINAT

Neutral atom trap for measuring β -decay and recoil asymmetries

Highlights:

- Most accurate nuclear β asymmetry using polarized ³⁷K (Fenker PRL 120 062503)
- Constraints on interactions making right-handed v's (complementary to eg. muon decay and W' searches)

Next:

- Asymmetry of nuclear recoils from ³⁷K
- Similar sensitivity to 4-fermion contact interpretation as LHC $p+p \rightarrow e^- + E_\perp^{miss}$
- Relative scalar and tensor couplings C_T and C_S will shift away from zero for beyond standard model interactions

²⁰²⁰⁻⁰⁸⁻¹⁷ Material courtesy of J. Behr

7

()

TRINAT

RIUMF

Neutral atom trap for measuring β -decay and recoil asymmetries

- Test T-reversal ${}^{38\mathrm{m}}\mathrm{K} \rightarrow {}^{38}\mathrm{Ar} + \beta \nu \gamma$
- $ec{p}_{
 u}\cdotec{p}_{eta} imesec{p}_{\gamma} \stackrel{t
 ightarrow -t}{\longrightarrow} -ec{p}_{
 u}\cdotec{p}_{eta} imesec{p}_{\gamma}$
- Unique possibility for this process (involving first generation)
- Potential future opportunity
- We consider $D\hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}}$ in ⁴⁵K

'isospin-forbidden mirror' decay:

 T-reversal violation enhanced by a factor 4...100 (must measure first the ratio strength TRV over Coulomb interaction)
 → complementary to neutron EDM

8

scover celerat

PIENU

Measurement of the pion decay branching ratio

- Most Accurate Test of Charged Current Lepton Flavor Universality (Current best result on electron/muon universality)
- Theoretical expectation
- Initial PIENU result
- Results in

 $e^{xp \pi} R_{e/\mu} = 1.2344(30) \ 10^{-4}$ $g_e \ / g_\mu = 0.9996 \pm 0.0012$

^{theo} R _{e/ μ} = 1.2353(02) 10⁻⁴

Full data set 10⁷ π⁺ → e⁺ ν events
 Precision goal ± 0.1 %

 $\frac{\pi^+ \to e^+ \nu(\gamma)}{\pi^+ \to \mu^+ \nu(\gamma)}$

- New results on rare and exotic decays improvements by one order of magnitude:
 - Massive sterile neutrinos $\pi^+ \rightarrow e^+/\mu^+ \nu_4$
 - Exotic muon decay $\mu \rightarrow e X$
 - Dark sector decays $\pi^+ \rightarrow e^+/\mu^+ \nu X$
- ²⁰²⁰⁻⁰⁸⁻¹⁷ Material courtesy of D. Bryman

ALPHA

- Apparatus to synthesize antimatter and study it
- Located at CERN's antiproton decelerator (AD)
- Combine atomic physics and particle physics techniques to perform tests of fundamental symmetries with antihydrogen

10

Material courtesy of M. Fujiwara

ALPHA

Testing symmetry between matter & antimatter

- Ground-breaking technology developments to synthesize, confine, manipulate and characterize antihydrogen atoms
- Spectroscopic test of CPT symmetry in antihydrogen
 - 2x10⁻¹² precision in 1s-2s laser spectroscopy (most precise measurement on antimatter to date)
 - Lyman-alpha, Lamb shift, and hyperfine spectroscopy of antihydrogen
 - Laser cooling of antihydrogen
 - Microwave spectroscopy of antihydrogen
- Gravitational free fall of antimatter
 - First measurements were taken before CERN shutdown
 - Top priority when beam comes back in 2021

Material courtesy of M. Fujiwara

ALPHA-g detector and TRIUMF people

∂TRIUMF

ALPHA

Laser cooling of antihydrogen: a major breakthrough and game changer

- Laser at 121 nm (VUV) is extremely challenging
- Two further papers submitted to Nature:
 - Demonstration of cooling
 - First application

Radial-drift TPC built at TRIUMF

Future ideas in ALPHA: quantum sensing

Material courtesy of M. Fujiwara

CERN

TUCAN

- Ultracold neutrons (UCN): very low energy neutrons, behave like a gas, can be stored and allow long observation times
- Advantageous over neutron beam experiments due to reduced systematics
- UCN enable high precision measurements of neutron properties and interactions
- Currently, most flagship UCN experiments are statistics limited!

UCN confined in a material box

TUCAN

Creating Ultracold Neutrons (UCN) for

the Neutron electric dipole moment search (nEDM) & future UCN user facility

- Spallation neutron source & superfluid Helium converter
- New proton beamline BL1U built 2013 2017, branching off of BL1A
- UCN beamtimes at TRIUMF with Japanese prototype source cryostat in 2017, 2018, and 2019
- Next generation world class UCN source, currently at technical design stage aiming at competitive densities
- Developing next generation nEDM spectrometer, currently at conceptual stage

UCN beamline and counter

The TUCAN facility – a sketch:

% TRIUMF

The new cryostat for UCN at TRIUMF

The TUCAN facility – a sketch:

The TUCAN facility – a sketch:

Summary

- TRIUMF's current 5YP (2020 2025) ensures the continued relevance and success of Canadian and TRIUMF's particle (and nuclear) physics at the fundamental symmetries front
- Exciting times ahead, based on our current activities & future plans
- Stay tuned for astro-particle physics and accelerator based particle physics

Enjoy Science Week and be inspired!

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated