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The Mystery of Dark Matter



Models of Dark Matter

• What is it made out of?

• How is it produced?

• Does it have interactions other than gravitational?



Why is the Electric Dipole Moment of the Neutron Small?

Neutron 
EDM

EDM ~ e fm θs

Experimental bound: θs  < 10-10

The Strong CP Problem and the QCD axion
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Mediates new forces and can be the dark matter



The String Axiverse

•Extra dimensions

•Gauge fields 
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The String Axiverse

•Extra dimensions

•Gauge fields 

•Topology

Give rise to a plenitude of massless particles in our Universe



A Plenitude of Massless Particles

• Spin-0 non-trivial gauge field configurations: String Axiverse

• Spin-1 non-trivial gauge field configurations: String Photiverse

• Fields that determine the shape and size of extra dimensions as 
well as values of fundamental constants: Dilatons, Moduli, 
Radion



What If DM Is a Boson and Very Light?
Dark Matter Particles in the Galaxy

Usually we think of …
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What If DM Is a Boson and Very Light?
Dark Matter Particles in the Galaxy

Decreasing DM Mass

Equivalent to a Scalar wave 

�DM =
~

mDMv



Light Scalar Dark Matter

• Produced by the misalignment mechanism
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Frozen when:
Hubble > mφ

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon



Light Scalar Dark Matter

• Produced by the misalignment mechanism
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scalar field

Frozen when:
Hubble > mφ

Oscillates when:
Hubble < mφ

ρφ scales as a-3

just like Dark Matter

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon



Light Scalar Dark Matter Today

• If mφ < 1 eV, can still be thought of as a scalar field today
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 mφ 2 φo2  cos2 (mφ t) ~ ρφ

Amplitude compared to MPl in the galaxy:

Coherent for υvir-2 ~106 periods



Axion Dark Matter

• Axion-to-photon conversion (ex. ADMX)

Some examples

Cavity size = Axion size



Axion Dark Matter

• Axion Force experiments (ex. ARIADNE)

• Axion Dark Matter experiments (ex. CASPEr)

Some examples

SpinN spins
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Dipole-Dipole Interaction

SpinMass with N nucleons

Monopole-Dipole Interaction



Dark Photon Dark Matter

• Detected if kinetically mixed with the photon

• Detected like a photon (ex. DM Radio and ADMX)

L � ✏FEMFDM

Some examples

DM electric field ⇠ p
⇢DM ~ 50 V/cm



• Couple non-derivatively to the Standard Model (as well axions 
with CP violation)

• Examples of couplings

OSM ⌘ meeē, mqqq̄, G2
s, F 2

EM , ...

Moduli Dark Matter

L = LSM +
p

~c�
⇤
OSM

Fundamental constants are not really constants



Oscillating Fundamental Constants
From the local oscillation of Dark Matter

Ex. for the electron mass:

Variation of atomic/nuclear transition frequencies at atomic clock experiments

dme

p
~c �

MPl
mec

2eē Mpl = 1018 GeV
reduced Planck scale in energy

�me

me
⇡ dme�0

MPl
cos(!DM t)

= 6.4⇥ 10�13 cos(!DM t)

✓
10�18 eV

mDMc2

◆✓
dme

1

◆

dme : coupling strength relative to gravity

AA, J. Juang, K. Van Tilburg (2014)

Variation of the bohr radius excites acoustic modes at resonant mass GW detectors



Black Holes as Nature’s Detectors

1 km -10 billion km

They can detect bosons of similar in size



Superradiance for a massive boson

Particle Compton Wavelength comparable to the size of the Black Hole

Damour et al; Zouros & Eardley; 
Detweiler; Gaina (1970s)
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Super-Radiance Signatures
GW annihilations

High frequency GWs 

axion

axion

graviton
Egraviton ≈ 2 maxion

•Signal enhanced by the square of the occupation number of the state

•Signal duration determined by the annihilation rate (can last thousands of years)



Superradiance Signatures

• Axion self-interactions produce monochromatic scalar wave 
radiation

• Potentially detectable to table-top experiments looking for Dark 
Matter

Scalar waves

BH bound axions

Free axions



The Scales in Our Universe

1026 10-4

Hubble PlanckCosmological constant

10-12 10-18

Standard
Model

LHC

10-35meters

eV 10-33 10-3 105 1011 1028

Grand UnificationNeutrino Masses

EDMs, g-2, Flavor Violation

Light Dark Matter

New Forces 

Gravitational Waves

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy. 
- Hamlet


