Ion Beams for Cancer Therapy

3.2

Joao Seco PhD DABR

Division of BioMedical Physics in Radiation Oncology, DKFZ

MMMMM

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

<u>Why Ion Beam Therapy (IBT)?</u> "Bragg Peak"

Quantifying Advantage of IBT

Advantage of Ion Beam Therapy

GSI – Darmstadt/Heidelberg Hospital, Germany

Research Directions in Ion Beam Therapy (IBT)

<u>FUTURE</u>: "Personalized" Radiation Therapy and IBT

"Non-Personalized"

- Patients with the same tumour disease and stage have typically received similar treatments
- Large clinical trials possible

PHYSICS / ENGINEERING

• <u>PRE-Treatment</u>

- Dual Energy CT (DECT) for stopping power estimation and better estimation before treatment
- □ Functional Imaging with PET-MRI for better staging

• **DURING-Treatment**

- □ Prompt Gamma real-time Range Monitoring
- □ FLASH Radiation Therapy (also **BIO**)
- □ Mini-Beams Radiation Therapy (also **BIO**)
- □ Adaptive Radiation Therapy with in-room 4D MRI

• <u>POST-Treatment</u>

□ Improved follow-up with PET-MRI or Whole Body PET to evaluate treatment response. (also **BIO**)

BIOLOGY

<u>PRE-Treatment</u>

- □ Genetic/Epi-Genetic Characterization and stratification of Tumor using biopsies or liquid-biopsies;
- □ Whole-Body PET for improve tumor staging for Hypoxia and radio-resistant regions within tumor. "Novel Tracers"

DURING-Treatment

- During treatment functional characterization of Tumor to allow early treatment response assessment;
- During treatment liquid-biopsy for genetic/epi-genetic characterization to assess treatment impact.

• <u>POST-Treatment</u>

□ Improved follow-up with PET-MRI and other functional imaging technology to evaluate treatment response.

PHYSICS/ENGINEERING

"Bragg Peak" Range Uncertainty

To treat the **TUMOR** (**CTV**) I need a dose distribution that's larger (**PTV**)

BIOLOGY

Exploiting Biological Knowledge to Stratify Patient Population

- Patients with the same tumour disease and stage have typically received similar treatments
 Large clinical trials
- Large clinical trials possible

BIOLOGY

Exploiting Biological Knowledge to Stratify Patient Population

- Patients with the same tumour disease and stage have typically received similar treatments
 Large clinical trials
- Large clinical trials possible

- Biomarkers allow stratification into small subgroups
- Trials for treatment individualization

Exploiting Biological Knowledge to Stratify Patient Population

- Biomarkers allow stratification into small subgroups
- Trials for treatment individualization

dkfz.

HPV - Human PapillomaVirus, CD44 - STEM Cell Marker

ENGINEERING

Addressing Movement of Tumors during Treatment

4D CT of Moving Lung Tumor

ENGINEERING

Addressing Movement of Tumors during Treatment

ViewRay MRIdian

MRI of Moving Liver/Lung

ENGINEERING

Addressing Movement with Proton MRI

BIOPHYSICS

1) Reducing Metastastic/Migration Capacity

HT1080

Ogata, et al. Particle irradiation suppresses metastatic potential of Cancer Cells. Cancer Res.. 2005, 65(1)

BIOPHYSICS

2) FLASH Radiation Therapy

Dose Rates Effects

FLASH: Reduces Normal Tissue Toxicity

- 4.5 MeV electron or γ-ray irradiated thorax of C57/B6 mice
- The two radiation qualities had similar effectiveness in lung fibrogenesis when delivered at the same conventional dose rate of 1.8 Gy min⁻¹.

Favaudon et al., Sci Trans Med 2014; Commentary in Durante et al., BJR 2018

Building Evidence for FLASH

Clinical Oncology 31 (2019) 407-415

Contents lists available at ScienceDirect Clinical Oncology ELSEVIER journal homepage: www.clinicaloncologyonline.net

Overview

Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken

M.-C. Vozenin *†, J.H. Hendry ‡, C.L. Limoli §

*Laboratory of Radiation Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland [†]Department of Radiation Oncology/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

[†]Department of Medical Physics and Engineering, Christie Hospital, Manchester, UK

⁵Department of Radiation Oncology, University of California, Irvine, California, USA

Received 27 February 2019; received in revised form 8 March 2019; accepted 12 March 2019

Table 1 In vivo studies of FLASH response for vious normal tissues						
Dose (Gy) at convention dose rates	FLASH dose rate (Gy/s)	Dose modifying actor	System	Anaesthetic	Assay	Reference
Normal tissues 11.9 14.7 24	17-83 70-210 56-83	3 3–1.24 1	Mouse intestine Mouse intestine Mouse foot skin	Nembutal ? Sodium amytal	LD50/5 LD50/5 Early and late reactions	[3] [14] [4]
50 22–34	17–170 300	1_6 ≥ .36	Mouse tail skin Minipig and cat skin	None General anaesthesia	Necrosis ND50 Early and late reactions	[5] [13]
15-17	40	8	Mouse lung	Ketamine/xylasine/ acepromazine	Fibrosis	[9]
10	100-104	A	Mouse brain	Isoflurane	Memory	[10] Montay-Gruel et al. (in revision)

<u>BIOPHYSICS</u> 3) Mini-Beam Radiation Therapy

Dose-volume effect: the smaller the field size is, the higher the tolerance

27/04/2018 Page 19

Zeman et al., Science (1959)

<u>BIOPHYSICS</u> 4) Mini-Beam Radiation Therapy

27/04/2018 Page 23

dkfz.

27/04/2018 Page 24

Thank You for Your Attention 🙂

