Fermilab ENERGY Office of Science

Background Subtraction when model is horribly wrong: Lessons from MINERvA

Deborah Harris, Fermilab

How do we know the model is horribly wrong?

- If it weren't, we wouldn't be doing the experiment
- First publications at MINERvA: v_{μ} and anti- v_{μ} CCQE

Energy near vertex prefers with adding an extra proton to 25±9% of events, consistent with a multinucleon hypothesis

• Other early publications: pion production

GENIE has to be scaled by 0.46 to agree with Deuterium Data

Pion energies, angles, and overall cross sections do not match GENIE Rod,Wil,McF, EPJC 76 (2016)

MINERvA Detector

- Nuclear Targets
 - Allows side by side comparisons between different nuclei
 - Pure C, Fe, Pb, LHe, water
- Solid scintillator (CH) tracker
 - Tracking, particle ID, calorimetric energy measurements
 - Low visible energy thresholds
- Side and downstream electromagnetic and hadronic calorimetry
 - Allow for event energy containment
- MINOS Near Detector
 - Provides muon charge and momentum

🞝 Fermilab

MINERvA Events

One out of three views shown, color = energy

MINERvA's Neutrino Flux

- Low energy beam:
 - Peak around 3GeV
 - "high energy tail" not negligible
 - Many processes will contribute backgrounds to any analysis (except maybe the "Charged Currrent Inclusive analysis")
- Medium Energy beam
 - Neutral currents will be larger background to v_e or v-electron scattering measurements than Low Energy beam

Case Study: coherent pion production

- This low multiplicity process is a troublesome background for oscillation experiments and previous low energy data is confusing
- Model independent selection and high statistics allows test of pion kinematics
- 1628 (770) coherent neutrino (antineutrino) events

Phys. Rev.Lett. 113, 261802 (2014) and PRD in preparation.

Experimental Signature and Backgrounds

- Signal:
 - Two final state particles (muon and charged pion)
 - Small momentum transfer to the nucleus
 - No visible recoil
- **Event Selection:**
 - Two tracks, one matched to MINOS
 - dE/dx of short track NOT proton-like
 - Low energy around the vertex
- Backgrounds:
 - All other pion production
 - Quasi-elastic scattering with protonpion confusion

Already see our model isn't perfect...

- Proton Score Discrepancy:
 - May be somewhat due to pion angle and momentum mismatch
 - Definitely depends on relative levels of QE and Resonance production
 - These plots ALREADY have non-resonant pion production reduced to 0.46*GENIE from D2 measurement Rod, Wil, McF, EPJC 76 (2016)
- Vertex Energy:
 - We know we don't have the vertex energy in CCQE v events right

Energy near vertex prefers with adding an extra proton to 25±9% of events, also consistent with a multinucleon hypothesis

• Muon momentum p_{μ} is measured from reconstructed muon in MINOS

- Muon angle θ_{μ} is measured from track in MINERvA
- pion energy (E_{π}) s reconstructed calorimetrically
- Neutrino direction is parallel to the beam axis

Kinematics of Signal process

🚰 Fermilab

Sidebands to test background model

- Use events passing vertex energy cut but with 0.2<ltl<0.6GeV²
- Check "pion" kinematics and levels

So by scaling the background levels we can get the pion energy distribution to match in the sideband

<u>×</u>10³

3.04E+20 POT

Untuned Background

1.2

≥

 $\rightarrow \mu^{-} + \pi^{+} + \mathbf{A}$

Data

QE

Coherent

W > 2.0

Other

Non-QE, W < 1.4 1.4 < W < 2.0

4.5

Sideband Tuning Result by Q²

Reconstructed Q² (GeV/c)²

Reconstructed Q² (GeV/c)²

Channel	Scale Factor	Note: th
Charged Current Quasielastic	1.13±0.04	suppress
Non-Quasielastic, W _{gen} <1.4GeV	0.73±0.08	weightin
1.4 <w<sub>gen<2.0</w<sub>	0.81±0.05	non-reso
W _{gen} >2.0	1.70±0.20	predictio
Other	1.0 (fixed)	(ref: EPJC

Note: this is a new suppression *after* weighting GENIE's non-resonant pion prediction by 0.46 ref: EPJC 76, 2016)

‡ Fermilab

11 6/24/17 Deborah Harris I Predicting Backgrounds at MINERvA

Pion angle in the sidebands after tuning

- There is still a mis-match, so we added a correction assuming that nature wants the pion angles we see in the sideband IN the signal region.
- Assumed the systematic uncertainty on the background's angular distribution is the difference between the tuned and untuned pion angle

Vertex Energy Uncertainty

- The pion backgrounds were tuned AFTER a cut on the vertex energy.
- The CCQE background that survives that cut depends on the model you assume for the CCQE process
- Initial expectation was that
 P
 25% of the CCQE events had an extra proton with a momentum between 0 and 225MeV
- Re-extract the cross section after adding the additional proton to the CCQE sample, apply as a systematic uncertainty

🌫 Fermilab

Uncertainty on Background Modeling

- Evaluate δ(background prediction) by marginalizing over systematic uncertainties
- Additional "Sideband model" shows up differently in different observables

A. Mislivec, FERMILAB-THESIS-2016-30, PRD in preparation

Lessons learned from Coherent Pions

- Adding extra vertex energy and modifying the pion background kinematics as systematics is something MINERvA does for many measurements
 - Neutrino-electron scattering
 - Electron neutrino CCQE measurement
 - CCQE in the nuclear targets (there it's the signal, not the background)
- As we start to develop better models, the background prediction process also changes
 - Add "2p2h events" instead of just adding extra protons
 - Add different sources of "2p2h" instead of just turningn on or off 2p2h (nn, np, pp, or just extra QE contribution)
 - Stop using difference between GENIE and MINERvA result as a systematic uncertainty, use uncertainty ON MINERvA result
 Fermilab

Neutrino Coherent Pion Results

• Stay tuned, a long PRD is in preparation with these results...

17 6/24/17 Deborah Harris I Predicting Backgrounds at MINERvA

Next example: v_e CCQE

- Event selection:
 - Identify an EM-like shower
 - Energy deposit at track end
 - "Width" of the track
 - Average dE/dx of entire track
 - Remove non-CCQE events
 - No Michel electrons
 - Anything not within a 7.5° e⁻ cone or 30cm of vertex is called "extra energy", cut on Ψ= E(extra)/E(cone)
 - Remove photons by early dE/dx cut

Graphics from: J. Wolcott JETP 9/15

Events after e⁻ ID and "extra energy" cut

Several different backgrounds persist

Find sidebands to constrain backgrounds

Graphics from: J. Wolcott JETP 9/15

🛟 Fermilab

19 6/24/17 Deborah Harris I Predicting Backgrounds at MINERvA

Signal and Sideband Distributions

- Fit the kinematic
 distributions in the
 sidebands for
 overall
 normalizations for 3
 scale factors
 - $\begin{array}{l} \ 0.90 \ \text{for ``other ν_e'',} \\ 1.11 \ \text{of ``Other NC} \\ \pi^{0"} \ \text{and ``CC ν_{μ}} \ \pi^{0"} \end{array}$
- But even after constraining model with the sidebands...

+ Data	$v_e^{}$ CCQE-like	Other CC ν_e	v + e elastic
NC Coh	Other NC π^0	$CC \; \nu_{\mu} \; \pi^{0}$	Other

Need to add: Diffractive π⁰ Production

Systematic Uncertainties on Backgrounds

Total Sys. Error

Coherent

- For v_e CCQE 0.6F ractional Uncertainty result: 0.5 sideband 0.4 model 0.3 not a big factor 0.2
- Excess process is a small contribution
- FSI still most important interaction systematic on CCQE

Lessons learned from coherent and v_e CCQE analyses:

- The more rare the process, the more different channels the backgrounds may have, some of which you didn't know existed
- The more channels you worry about, the more sidebands you need to constrain those backgrounds
- Award for most (confusing) sidebands: neutrino-electron scattering analysis

Neutrino-electron Scattering

- Well-predicted cross section, useful for flux constraint
- Simple final state: single electron in direction of neutrino beam
- Can isolate electrons from dE/dx at beginning of the shower
- Observables:
 - electron energy (E $_{\rm e})$ and angle with respect to beam ($\theta)$
 - From kinematics, know that $E_e \theta^2$ should be $m_e^2/2$
 - dE/dx at beginning of shower
- Cut on all energy outside of electron cone to get rid of backgrounds
- Lots of possible sidebands to pick

Phys. Rev. D 93, 112007 (2016)

v-e candidates after Electron ID cuts

芬 Fermilab

- This is after background tuning, but you see how many backgrounds contribute
- Tuning is done as function of OTHER variables

Sideband Definitions for v-e scattering

• Use dE/dx and $E_e \theta^2$ to define the sidebands, then fit events in those windows as function of other observables

- Sideband (b) is then broken up into 3 regions to determine 3 overall normalization factors
 - Minimum dE/dx to prevent vertex energy mismodeling
- Remove cut on shower end transverse position and fiducial track length to get full statistical power of the sideband
 Fermilab

Sideband Distributions before and after tuning

- Shower End Transverse position distributions for $E\theta^2 > 0.05 GeVrad^2$

Systematic Uncertainties on v-e scattering

- Interaction Model is important—but uncertainties were reduced from sideband tuning
- CCQE shape uncertainty is called out separately
 - Need to extrapolate from high Eθ² to low Eθ², similar to extrapolating from high Q² to low Q²
 - Took as the systematic uncertainty the entire difference between GENIE and MINERvA

Conclusions

- The better foundation you have to make models for all the different processes you have in your data, the better your background predictions will be
- Still will need sidebands and clever strategies to really test these background predictions
- MINERvA's medium energy data set has lots more statistics, so there are lots more background techniques we can explore
- Future focus on nuclear targets means more background subtraction challenges:
 - Need to subtract non-target backgrounds AND specific channel backgrounds

