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The unfolding problem

Any differential cross section measurement is affected by the finite
resolution of the particle detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Ill-posed inverse problem with major methodological challenges
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Problem formulation

Let f be the true, particle-level spectrum and g the smeared, detector-level
spectrum

Denote the true space by T and the smeared space by S (both taken
to be 1D intervals on the real line)
Mathematically f and g are the intensity functions of the underlying
Poisson point process

The two spectra are related by

g(s) =

∫
T

k(s, t)f (t) dt,

where the smearing kernel k represents the response of the detector and is
given by

k(s, t) = p(Y = s|X = t,X observed)P(X observed|X = t),

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g
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Discretization

Problem primarily discretized using histograms (splines are also sometimes used)
Let {Ti}pi=1 and {Si}ni=1 be binnings of the true space T and the smeared space S
Smeared histogram y = [y1, . . . , yn]T with mean

µ =

[∫
S1

g(s) ds, . . . ,

∫
Sn

g(s) ds

]T
Quantity of interest:

λ =

[∫
T1

f (t) dt, . . . ,

∫
Tp

f (t) dt

]T
The mean histograms are related by µ = Kλ, where the elements of the response
matrix K are given by

Ki,j =

∫
Si

∫
Tj
k(s, t)f (t) dt ds∫
Tj
f (t) dt

= P(smeared event in bin i | true event in bin j)

The discretized statistical model becomes

y ∼ Poisson(Kλ),

where K is an ill-conditioned matrix
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Demonstration of ill-posedness
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Demonstration of ill-posedness
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MSE(θ̂) = E((θ̂ − θ)2) = [bias(θ̂)]2 + var(θ̂)

Regularization: bias ↑, variance ↓ ⇒ MSE ↓
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Current methodology

Two main approaches to unfolding:

1 Tikhonov regularization (Höcker and Kartvelishvili, 1996; Schmitt, 2012)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995;
Richardson, 1972; Lucy, 1974; Shepp and Vardi, 1982; Lange and Carson,
1984; Vardi et al., 1985)
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Tikhonov regularization

Tikhonov regularization estimates λ by solving:

min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δP(λ)

The first term as a Gaussian approximation to the Poisson log-likelihood
The second term penalizes physically implausible solutions
Common penalty terms:

Norm: P(λ) = ‖λ‖2

Curvature: P(λ) = ‖Lλ‖2, where L is a discretized 2nd derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L

λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

,

where λMC is a MC prediction for λ
TUnfold1 (Schmitt, 2012): P(λ) = ‖L(λ− λMC)‖2

1TUnfold implements also more general penalty terms
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D’Agostini iteration

Starting from some initial guess λ(0) > 0, iterate

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

Regularization by stopping the iteration before convergence:

λ̂ = λ(K) for some small number of iterations K
I.e., bias the solution towards λ(0)

Regularization strength controlled by the choice of K

In RooUnfold (Adye, 2011), λ(0) = λMC
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D’Agostini iteration

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

This iteration has been discovered in various fields, including optics
(Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp
and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

In particle physics, it was popularized by D’Agostini (1995) who
called it “Bayesian” unfolding

But: This is in fact an expectation-maximization (EM) iteration
(Dempster et al., 1977) for finding the maximum likelihood estimator
of λ in the Poisson regression problem y ∼ Poisson(Kλ)

As k →∞, λ(k) → λ̂MLE (Vardi et al., 1985)

This is a fully frequentist technique for finding the (regularized) MLE

The name “Bayesian” is an unfortunate misnomer
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Choice of the regularization strength

A key issue in unfolding concerns the choice of the regularization
strength (δ in Tikhonov, K in D’Agostini)

This choice has a major impact on the unfolded solution!

To avoid MC dependence, the choice should ideally be done using a
data-driven technique instead of MC studies
Many data-driven methods have been proposed:

Cross-validation (Stone, 1974)
L-curve (Hansen, 1992)
Empirical Bayes estimation (Kuusela and Panaretos, 2015)
Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
Akaike information criterion (Volobouev, 2015)
Minimization of a global correlation coefficient (Schmitt, 2012)
...

Limited experience about the relative merits of these methods in
typical unfolding problems

Some evidence that empirical Bayes tends to be more stable than
cross-validation (Kuusela, 2016; Wood, 2011)

Note: All these are aiming to achieve optimal point estimation
Not necessarily optimal for uncertainty quantification!
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Some remarks based on experience from the LHC

One should think carefully if unfolding is really needed

E.g., if the goal of the experiment is to measure just a few 1-dimensional
parameters, then one should perform the fit in the smeared space (as
opposed to inferring the quantities from the regularized unfolded spectrum)
What about smearing the theory instead of unfolding the data?
(Complicated by systematics in the response matrix)
Unfolding can be useful for comparison of experiments, propagation to
further analyses, cross section ratios, tuning of MC generators, exploratory
data analysis,...

One should analyze carefully if regularization is necessary

If there is little smearing (response matrix almost diagonal), then the MLE
obtained by running D’Agostini until convergence will do the job2

Some insight can be obtained by studying the condition number of K

2The matrix inverse λ̂ = K−1y also gives the MLE provided that K is invertible and λ̂ ≥ 0
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Some remarks based on experience from the LHC

One must not rely on software defaults for the regularization strength

The unfolded solution is very sensitive to this choice and the optimal
choice is very problem dependent
In particular, the default 4 iterations for D’Agostini in RooUnfold is just
an arbitrary choice and does not guarantee a good solution

The standard methods (at least as implemented in RooUnfold)
regularize by biasing the solution towards the MC prediction λMC

Danger of producing over-optimistic results, as too strong regularization
will always make the unfolded histogram match the MC, whether the MC
is correct or not
Safer to use MC-independent regularization
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Some remarks based on experience from the LHC

TUnfold is more versatile and better documented than RooUnfold

In particular, TUnfold allows one to change the bias vector λMC, while
in RooUnfold it is fixed to the same MC that is used to construct the
response matrix

One cannot simply do away with ill-posedness by using wider bins

The wider the bins, the more dependent the response matrix K becomes
on the assumed shape of the spectrum inside the bins

Uncertainty quantification (i.e., providing confidence intervals) in the
unfolded space is a very delicate matter

When regularization is used, the variance alone may not be a good
measure of uncertainty because it ignores the bias
But the bias is needed to regularize the problem...
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Uncertainty quantification in unfolding

Aim: Find random intervals
[
λi (y), λi (y)

]
, i = 1, . . . , p, with coverage

probability 1− α:

Pf
(
λi ∈

[
λi (y), λi (y)

])
≥ 1− α, ∀f

Current methods quantify the uncertainty using the binwise variance
(estimated using either error propagation or resampling):

[
λi , λi

]
=

[
λ̂i − z1−α/2

√
v̂ar
(
λ̂i
)
, λ̂i + z1−α/2

√
v̂ar
(
λ̂i
) ]

But: These intervals may suffer from significant undercoverage since
they ignore the regularization bias

Two ways to obtain improved coverage performance:

1 Debiased intervals (Kuusela and Panaretos, 2015; Kuusela, 2016)

2 Shape-constrained intervals (Kuusela and Stark, 2017; Kuusela, 2016)
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Undercoverage of existing methods (Kuusela, 2016)
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Undercoverage of existing methods (Kuusela, 2016)
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UQ for Tikhonov regularization, P(λ) = ‖λ‖2
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Improved uncertainty quantification by undersmoothing

Unbiased,

coverage = 1− α
Optimal point estimation,

coverage � 1− α
Optimal UQ,

coverage = 1− α− ε

Undersmoothed UQ for unfolding (Kuusela, 2016)

1 Choose pilot estimate of δ using one of the standard data-driven methods
(CV, MMLE, L-curve,...)

2 Reduce δ until intervals to have estimated coverage 1− α− ε, for some
small tolerance ε
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Coverage study

Method Coverage at t = 0 Mean length

BC (data) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
BC (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
US (data) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
US (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

BC = iterative bias-correction
US = undersmoothing
MMLE = choose δ to maximize the marginal likelihood

MISE = choose δ to minimize the mean integrated squared error

This and further simulation studies in Kuusela (2016) show that data-driven

debiasing performs robustly in many variants of the unfolding problem
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TUnfold with data-driven undersmoothing

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, ScanLcurve
Average interval length: 29.3723

Binwise coverage, ScanLcurve

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, Undersmoothing
Average interval length: 308.004

Binwise coverage, Undersmoothing

6− 4− 2− 0 2 4 60

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

Unfolded, ScanLcurve

Unfolded

True

Unfolded, ScanLcurve

6− 4− 2− 0 2 4 60

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

Unfolded, UndersmoothingUnfolded, UndersmoothingCoverage when δ chosen using
L-curve.

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, ScanLcurve
Average interval length: 29.3723

Binwise coverage, ScanLcurve

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, Undersmoothing
Average interval length: 308.004

Binwise coverage, Undersmoothing

6− 4− 2− 0 2 4 60

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

Unfolded, ScanLcurve

Unfolded

True

Unfolded, ScanLcurve

6− 4− 2− 0 2 4 60

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

Unfolded, UndersmoothingUnfolded, UndersmoothingCoverage when δ undersmoothed to
give 67 % coverage.

Mikael Kuusela (UChicago) June 24, 2017 25 / 27



TUnfold with data-driven undersmoothing
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Undersmoothing code (modification of TUnfold by Lyle Kim and myself)
available at: https://github.com/lylejkim/UndersmoothedUnfolding

Note: This is an early version, any feedback is most welcome!
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TUnfold with data-driven undersmoothing
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Undersmoothing code (modification of TUnfold by Lyle Kim and myself)
available at: https://github.com/lylejkim/UndersmoothedUnfolding

Note: This is an early version, any feedback is most welcome!
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Summary and conclusions

Unfolding is a complex data analysis task with many potential pitfalls
It is crucial to understand all the ingredients that go into an unfolding
procedure

Tikhonov regularization and D’Agostini are the two most popular techniques
Personally I find it easier to interpret the 2nd derivative penalty in
Tikhonov than the early stopping in D’Agostini

Results from standard software (RooUnfold) depend strongly on the MC
prediction (results biased towards the MC)

Safer to use MC-independent regularization (possible in TUnfold)
Proper choice of the regularization strength is crucial

A choice that is optimal for point estimation might not be optimal for
uncertainty quantification

Statistical uncertainties from standard techniques can be unreliable
Improved uncertainty quantification can be achieved by debiasing
Data-driven undersmoothing now available for ROOT!

Many open statistical issues remain:
How to properly present unfolded results? (Bins are correlated)
How to properly deal with systematics in the detector response?
How to properly compare, combine and propagate unfolded results?
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Backup
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Examples of unfolding in LHC data analysis
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Coverage for Gaussian observations

Proposition

Assume y ∼ N (Kβ,Σ), where Σ ∈ Rn×n is a known covariance matrix and
K ∈ Rn×p. Let β̂ = Ay with A ∈ Rp×n be a linear estimator of β and let
θ̂ = cTβ̂ be the corresponding estimator of the quantity of interest θ = cTβ.
Then the confidence interval[

θ, θ
]

=

[
θ̂ − z1−α/2

√
var
(
θ̂
)
, θ̂ + z1−α/2

√
var
(
θ̂
)]

=
[
θ̂ − z1−α/2

√
cTAΣATc , θ̂ + z1−α/2

√
cTAΣATc

]
has coverage probability

Pβ
(
θ ≤ θ ≤ θ

)
= Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + z1−α/2

)
− Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + zα/2

)
,

where bias
(
θ̂
)

= Eβ

(
θ̂
)
− θ = cT(AK − I )β is the bias of θ̂,

SE
(
θ̂
)

=
√

var
(
θ̂
)

=
√

cTAΣATc is the standard error of θ̂ and Φ is the

standard normal cumulative distribution function.
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Comparison of intervals, λtot = 1 000
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CV vs. EB
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CV vs. EB
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Variability of interval lengths, λtot = 1 000
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Variability of interval lengths, λtot = 10 000
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Variability of interval lengths, λtot = 50 000
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Point estimation demonstration
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UQ hampered by the bias
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Effect of bias-correction on coverage
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Effect of bias-correction on interval length
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Data-driven debiased confidence intervals

⇒ Choose the amount of debiasing to calibrate 1− α intervals to have

coverage 1− α− ε

[See Kuusela (2016) for details.]

−6 −4 −2 0 2 4 6

−0.1

0

0.1

0.2

0.3

0.4

0.5

f(
s
)

(a) Non−bias−corrected intervals, σ = 0.005

 

 
Non−bias−corrected
True
Smeared

−6 −4 −2 0 2 4 6

−0.1

0

0.1

0.2

0.3

0.4

0.5

f(
s
)

(b) Iteratively bias−corrected intervals, σ = 0.005

 

 
Bias−corrected
True
Smeared

Figure: Gaussian intervals, 95 % nominal coverage, 94 % target coverage
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Comparison of coverage performance, λtot = 1 000
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Comparison of coverage performance, λtot = 10 000
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Comparison of coverage performance, λtot = 50 000
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Z → e+e−: Setup

We demonstrate the proposed approach by unfolding the Z → e+e−

invariant mass spectrum measured in the CMS experiment
The data are published in CMS Collaboration (2013a) and correspond to
integrated luminosity of 4.98 fb−1 collected in 2011 at

√
s = 7 TeV

67 778 “high quality” electron-positron pairs with invariant masses
65–115 GeV in 0.5 GeV bins
Response: convolution with the Crystal Ball function

CB(m|∆m, σ2, α, γ) =

Ce−
(m−∆m)2

2σ2 , m−∆m
σ > −α,

C
(
γ
α

)γ
e−

α2

2

(
γ
α − α−

m−∆m
σ

)−γ
, m−∆m

σ ≤ −α

CB parameters estimated with maximum likelihood using 30 % of the
data (“training data”) assuming that the true spectrum is the
non-relativistic Breit–Wigner with PDG values for the Z mass and width

The remaining 70 % used for unfolding (“test data”)
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Z → e+e−: Unfolding results
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Figure: Z boson invariant mass spectrum, N̂BC = 14, 95 % percentile
intervals, 94 % target coverage
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Shape-constrained unfolding

We present a technique for forming confidence intervals for λ that
have guaranteed simultaneous frequentist finite-sample coverage,
provided that f satisfies simple, physically justified shape constraints.

The shape constraints (positivity, monotonicity and convexity) are sat-
isfied in the important and common class of unfolding problems with
steeply falling particle spectra.

Examples from the LHC include the differential cross sections of:

Jets (CMS Collaboration, 2013b)

Top quark pairs (CMS Collaboration, 2013c)

W boson (ATLAS Collaboration, 2012)

Higgs boson (CMS Collaboration, 2016)

...
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Regularization using shape constraints
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Regularization using shape constraints
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Strict bounds confidence intervals (Stark, 1992)

Rn

Smeared space

V

True space

yΞ

D = K−1(Ξ)
C

f

K

µ

R

Hk

λk λkλk

λk = Hk f =
∫
Ek
f (s) ds, λk = min

f ∈C∩D
Hk f , λk = max

f ∈C∩D
Hk f

Pf (µ ∈ Ξ) ≥ 1− α ⇒ Pf (f ∈ D) ≥ 1− α
⇒ Pf (f ∈ C ∩ D) ≥ 1− α
⇒ Pf (λ ∈ [λ1, λ1]× · · · × [λp, λp]) ≥ 1− α
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Shape-constrained strict bounds

Hence the problem reduces to solving the optimization problems

min
f∈C∩D

Hk f and max
f∈C∩D

Hk f

We derive a conservative solution for the following shape constraints:
1 f positive ⇒ finite-dimensional linear program
2 f positive and decreasing ⇒ finite-dimensional linear program
3 f positive, decreasing and convex ⇒ finite-dimensional program with a

linear objective function and nonlinear constraints

Strategy (Stark, 1992):
1 Use Fenchel duality to turn the infinite-dimensional problem into a

semi-infinite program with an n-dimensional unknown and an infinite set
of constraints

2 Discretize the constraints in such a way that the discretized problem is
guaranteed to yield a conservative solution

This enables us to efficiently compute simultaneous confidence intervals for λ

The coverage of the intervals is guaranteed for known smearing kernel k
and for true f satisfying the shape constraints
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Demonstration: Inclusive jet pT spectrum

We demonstrate shape-constrained unfolding using the inclusive jet
transverse momentum spectrum

Let the true spectrum be (CMS Collaboration, 2011)

f (pT) = LN0

( pT
GeV

)−α(
1− 2√

s
pT

)β
e−γ/pT ,

with L = 5.1 fb−1,
√
s = 7000 GeV,N0 = 1017 fb/GeV, γ = 10 GeV,

α = 5 and β = 10

We generate the smeared data by convolving this with the calorimeter
resolution N (0, σ(pT)2), where

σ(pT) = pT

√
N2

p2
T

+
S2

pT
+ C 2, N = 1 GeV, S = 1 GeV1/2,C = 0.05
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Demonstration: Inclusive jet pT spectrum
(a) Inclusive jet p

T
 spectrum, linear scale
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Figure: Shape-constrained unfolded confidence intervals for the inclusive
jet pT spectrum with guaranteed conservative 95 % simultaneous coverage.
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Demonstration: Inclusive jet pT spectrum
(b) Inclusive jet p

T
 spectrum, log scale
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Figure: Shape-constrained unfolded confidence intervals for the inclusive
jet pT spectrum with guaranteed conservative 95 % simultaneous coverage.
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Demonstration: Inclusive jet pT spectrum
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(a) SVD variant of Tikhonov regularization
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(b) D’Agostini iteration
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Demonstration: Inclusive jet pT spectrum
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Uncertainty quantification

Let SE[λ̂i ] be the standard error of λ̂i (i.e., the standard deviation of
the sampling distribution of λ̂i )

In many situations, λ̂i ± ŜE[λ̂i ] provides a reasonable 68% confidence
interval

But this is only true when λ̂i is unbiased and approximately Gaussian

But in regularized unfolding the estimators are always biased!
Regularization reduces variance by increasing the bias (bias-variance
trade-off)
Hence the SE confidence intervals may have lousy coverage

SE[λ̂i ] SE[λ̂i ]

p(λ̂i |λ)

λi = E[λ̂i ]
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Problem formulation using Poisson point processes

The appropriate mathematical model for unfolding is that of an
indirectly observed Poisson point process

Definition

A random point measure M is a Poisson point process with
intensity function f and state space E ⊂ R iff

1 M(B) ∼ Poisson(λ(B)), where λ(B) =
∫
B f (s) ds, for every

(Borel) set B ⊂ E ;

2 M(B1), . . . ,M(Bn) are independent random variables for
disjoint (Borel) sets B1, . . . ,Bn ⊂ E .
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Interpretation of frequentist confidence intervals
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Figure: Frequentist confidence intervals imply coverage not only for independent
repetitions of the same measurement, but also for independent measurements of
unrelated quantities of interest {θi}.
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Use of the unfolded simultaneous confidence intervals

In my view, the best way of
communicating the unfolded results is a
simultaneous confidence envelope in the
unfolded space

This confidence envelope has a direct
physical interpretation

The envelope contains the true λ,
whatever it may be, at least 95% of the
time under repeated sampling

(b) Uncertainty quantification with strict bounds
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The envelope can be used to perform a goodness-of-fit test of a new theory
prediction by simply overlaying the prediction on the figure

If the prediction is contained within the envelope then it is consistent with CMS
data
If the prediction is outside the envelope at any bin, then it is rejected at 5%
significance level

The envelope can be used for propagating the unfolded measurements to
further analyses (after an appropriate multiplicity correction)

Algorithms for doing this are not yet there, but can be developed
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