The Likelihood Machine

A Tool for Model-Agnostic Cross-Section Analyses and Other Counting Experiments

L. Koch

III. Physikalisches Institut B, RWTH Aachen University State of the Nu-tion, NuInt2017, University of Toronto

Challenges of cross-section measurements

- What me measure is not what happened
 - reco space \neq truth space

My model of how we measure reality:

- 1. Something happens (truth space)
- 2. The happening causes signals in the detector
- 3. Reconstruction and analysis create an imperfect ("smeared") picture of what happened (reco space)
 - In general we are interested in what happened, not in the picture

A "standard" way to get back to truth:

- 1. Measure something (take a picture in reco space)
- 2. Unfold to remove the detector effects
- 3. Publish unfolded data points with statistical and systematic uncertainties (truth space)

Challenges of cross-section measurements

- What me measure is not what happened
 - reco space \neq truth space

My model of how we measure reality:

- 1. Something happens (truth space)
- 2. The happening causes signals in the detector
- 3. Reconstruction and analysis create an imperfect ("smeared") picture of what happened (reco space)
 - In general we are interested in what happened, not in the picture

A "standard" way to get back to truth:

- 1. Measure something (take a picture in reco space)
- 3. Publish unfolded data points with statistical and systematic uncertainties (truth space)

Let's try something simple

- TZK
- Working on first neutrino cross-section measurement on gaseous argon at T2K
- Low density target \Rightarrow low statistics
- Original plan was aiming for simple, single-bin measurement of inclusive CC reactions
 - 1. Find a muons starting in the TPC
 - 2. Count number of events
 - 3. Apply purity and efficiency correction ("unfolding light")
 - 4. Done.

Let's try something simple

- TZK
- Working on first neutrino cross-section measurement on gaseous argon at T2K
- Low density target \Rightarrow low statistics
- Original plan was aiming for simple, single-bin measurement of inclusive CC reactions
 - 1. Find a muons starting in the TPC
 - 2. Count number of events
 - 3. Apply purity and efficiency correction ("unfolding light")
 - 4. Done.

No such thing as "simple"

- Detection efficiency depends on event properties
 - E.g. muon direction and momentum
- Overall efficiency and purity of sample depend on the physics model
- Fix: Constrain measurement to phase space of flat efficiency

True number of charged particles at vertex

- Detection efficiency also depends on particle multiplicity
 - The more stuff is going on, the easier the reconstruction gets confused
- Unlike with the muon momentum, there is no clear plateau
 - Where to put the constraints of phase-space?

Let's try something smart

Since simple won't work...

- Transition from truth to reco space and back is not symmetric
 - Differences in truth space are smeared out in reco space
- It is hard to find the original truth distribution from a given reco distribution
- It is easy to get the smeared reco distribution from a given truth distribution
- Instead of bringing reco data to truth space, bring model predictions to reco space
- Use response matrix to handle smearing and efficiency
 - Contains all information about the detector, reconstruction and event selection

Details

- Forward only
 - The matrix will only be used in the "forward folding" direction
 - Does not need not be invertible, can have arbitrary shape

$$u_i = R_{ij}\mu_j$$

• Likelihood calculation for given truth expectation values is straight-forward

$$L = \prod_{i} \frac{(R_{ij}\mu_j)^{n_i}}{n_i!} \exp(-R_{ij}\mu_j)$$

- Systematic uncertainties on matrix only
 - The data is the data is the data
 - Actually, it is the only thing we are 100% sure of!
- Data statistics are automatically considered when using likelihood to build confidence/credible intervals
 - Stat errors on data points only make sense when interpreting data as imperfect measurements of expectation values
 - We generate expectation values from truth with the response matrix, though!

- Systematics only apply to the response matrix
- Analytical propagation difficult and usually assumes normal distribution
- Do numerical propagation instead
- Detector simulation is varied according to systematics
- Each variation yields its own response matrix
- Set of response matrices contains all information about systematics
- Each matrix yields own likelihood for given truth prediction
- Treat selection of response matrix as nuisance parameter
 - Calculate average for marginal likelihood
 - Select maximum for profile likelihood
 - Let MCMC select toy matrix randomly according to likelihood

Think of the possibilities

- A matrix is a simple mathematical object
 - Easy to share with others, easy to use
- Publishing data together with response matrix!
 - Enables anyone to test their physics model against our data
 - Longer "shelf life" of data
 - Faster test of new theories
- Even better: Publish framework for using the response matrix

Aims

- Be accessible
 - It should be easy to obtain the software and get started
- Be user friendly
 - Make it as easy as possible to use the software
- Be flexible
 - Allow more complicated analyses, if the user wishes to do so
- Be maintainable
 - Ideally this software will be used for years to come!

Info

- Written in Python
 - Very easy install with pip (not implemented yet)
 - Flexible to a fault
- Open source
 - Currently hosted on Github: https://github.com/ast0815/likelihood-machine

Defining the binning

- To create a response matrix one needs to define the bins in truth and reco space
- N-dimensional binnings are described in YAML files:

Building the response matrix

import binning
from migration import ResponseMatrix
with open("truth-binning.yml", 'r') as f:
 truth_binning = binning.yaml.load(f)
with open("reco-binning.yml", 'r') as f:
 reco_binning = binning.yaml.load(f)
resp = ResponseMatrix(reco_binning, truth_binning)
resp.fill_from_csv_file("simulated_data.csv")
resp.fill_up_truth_from_csv_file("true_events.csv")

- Data is taken from CSV files
 - One event per line, each binned variable as a column
- fill_up_truth_from_csv_file step optional
 - Needed only when $\mathtt{simulated_data.csv}$ does not contain all true events
- CSV is an extremely low-level data format
 - Easy to output by about every simulation software
 - Easy to read into about every kind of analysis software
- More specialised formats can be added in the future
 - E.g. direct reading of ROOT trees

Use the power of someone else's work

resp.plot_response_values('output.png', variables=(None,None))

- Many useful methods to check the matrix are already implemented
 - Plot values
 - Plot uncertainties due to MC statistics
 - Plot expected variation inside bins
 - ...
- I will add everything I need for my analysis, so others will be able to use it in theirs
- When other people start to use this, I will be very happy to work with them to implement whatever they need

The actual likelihood machines

from likelihood import LikelihoodMachine, CompositeHypothesis

```
matrix = get_response_matrix_as_ndarray()
lm = LikelihoodMachine(data_array, matrix)
```

print lm.log_likelihood(some_truth_prediction)

print lm.max_log_likelihood(H0)
print lm.max_likelihood_p_value(H0)

- All calculations handled by Numpy (Numeric Python)
 - Flexibility of Python, performance of compiled C++
- Offers methods to do "common" analysis tasks

from likelihood import JeffreysPrior
from pymc.Matplot import plot as mcplot

- A Markov Chain Monte Carlo algorithm is implemented using the PyMC package
- JeffreysPrior class takes care of calculating "objective" priors for parameters
 - Works numerically
 - Should be applicable to all hypotheses with continuous parameters

Outlook

Likelihood Machine

- Software framework for cross-section and general counting experiments
- Centered around response matrix concept
- Focus on ease-of-use and flexibility

Present

- Developed alongside T2K neutrino gas interaction analysis
- Entering "final integration" stage
 - Core functionality realised
 - Most of convenience functions done

Future

- Release v1.0 together with gas interaction analysis
 - Distribution via pip
- Adapt to needs of other analyses
 - Thinking about using this? Get in touch as early as possible!

Thank you!

This is not a tutorial!

- Development is not finished and things might change without notice. Talk to me!
- 1. Use Highland to build data selection and do systematic variations
- 2. Create a large sample of varied MC data
- 3. Parse Highland ROOT output files to CSV
 - Could implement direct ROOT tree loading in the future
- 4. Define truth and reco binning for response matrix in YAML (text) files
- 5. Use Likelihood Machine ResponseMatrix to build set of response matrices and check their properties
- 6. Create (fake) data sample with Highland and parse to CSV
- 7. Use Likelihood Machine LikelihoodMachine to test hypotheses against data
 - Aside from the "hyper-hypothesis" (all truth bins free-floating), hypotheses must define truth expectation values.
 - Can be achieved by generating Monte Carlo events (truth only, no detector simulation needed!), filling it into truth binning and scaling to match POT
 - Mixed mode also possible: BG bins free-floating, signal bins defined by generator
- 8. When publishing, publish response matrix together with selection!

The Likelihood Machine in T2K

This is not a tutorial!

- Development is not finished and things might change without notice. Talk to me!
- 1. Use Highland to build data selection and do systematic variations
- 2. Create a large sample of varied MC data
- 3. Parse Highland ROOT output files to CSV
 - Could implement direct ROOT tree loading in the future
- 4. Define truth and reco binning for response matrix in YAML (text) files
- 5. Use Likelihood Machine ResponseMatrix to build set of response matrices and check their properties
- 6. Create (fake) data sample with Highland and parse to CSV
- 7. Use Likelihood Machine LikelihoodMachine to test hypotheses against data
 - Aside from the "hyper-hypothesis" (all truth bins free-floating), hypotheses must define truth expectation values.
 - Can be achieved by generating Monte Carlo events (truth only, no detector simulation needed!), filling it into truth binning and scaling to match POT
 - Mixed mode also possible: BG bins free-floating, signal bins defined by generator

8. When publishing, publish response matrix together with selection!

Creating a selection for the Likelihood Machine

- Create and optimise main selection as usual
- Add mutually exclusive branches as control regions for BG constraining
 - The Likelihood Machine will handle BG the same way it does signal
 - BG will be constrained by data in a "natural" way
 - No model dependence!
 - Re-claims signal events that end up in the control regions
 - Increased efficiency!

Caveat

19/17

- Systematic weight variations must conserve the number of events!
- Otherwise efficiency will be wrong

୲୦ **III. Physikalisches** Institut B

Parsing Highland output to CSV

• Currently done in analysis-specific script, will write something more universal later

true_mom,true_costheta,reactionBG,reco_mom,reco_costheta, \
 successful_branch,weight_syst_total__0,weight_syst_total__1
400.3,0.45,1,444.4,0.46,0,0.98,1.05

443.6,-0.05,7,666.6,0.06,3,1.04,1.12

- First line: variables names
 - Need not match root names
 - Should not contain special characters
- Each toy variable needs its own column
- Create two CSV files: One for all_syst tree and one for truth tree
 - <code>all_syst</code> used for mapping from truth bin to reco bin
 - $\ensuremath{\mathsf{truth}}$ used to get proper efficiencies

Caveat

- Truth variable contents in both trees must match exactly!
- For all truth bins, either all events in all_syst must be also present in truth (signal), or none (BG)

