MINERvA Cross Sections The Nitty Gritty Details

Daniel Ruterbories On Behalf of the MINERvA Collaboration June 23rd , 2016

Outline

- MINERvA very briefly
- General approach to cross sections
- Analysis Framework
- Specific case CC0π Double Differential

The MINERvA Experiment

- Study neutrino-nucleus scattering at a few GeV
 - Measure the effects of the nuclear environment on neutrino scattering
 - Improve understanding of neutrino-nucleus cross section model by working with generators
 - Benefits current and future neutrino oscillation experiments
 - Measure A-dependence using the same detector in the same beam simultaneously

Experimental Apparatus

Beam Direction

Nucl. Inst. and Meth. A743 (2014) 130 arXiv:1305.5199

General Approach

Wish list – What's the right order?!

- Select as many events of the type you are interested in
- Reject as many of the events which are not the type you are interested in
- Minimize your systematic errors critical with large exposures where you will not have statistics issues
- Report something which is both interesting and useful to the community
- Minimize your reliance on the model in the simulation

Interesting and useful

Interesting and useful

Event Selection

Interesting and useful

Interesting and useful

This loop is where, as an analyst, we spend almost all our time.

Interesting and useful

Report

Interesting and useful

Report

So, How?

- Large uncertainties (typically) on the backgrounds in the model
- We have all sorts of data to constrain these use it.
- Sidebands, shape analysis, anything to help understand your background

Unfolding

- MINERvA's goal in analysis design is to make the unfolding handle detector smearing, but not model effects.
 - Unfold in observable variables, not model variables
- Framework used is iterative unfolding implemented in RooUnfold
- MINERvA does extensive testing to understand an appropriate number of iterations
- Unfold in all systematic universes when possible
 - Need to watch for statistical fluctuations inflating systematic uncertainties

Acceptance

- To do full phase space or not that is the question
 - Fiducial Cross Sections (measure what you see) are more appealing
- Design your signal to match what you reconstruct.

Framework

2-stages of analysis

- General reconstruction is run slice time, make long tracks, match to MINOS
- (1) Every analysis designs an analysis tool
 - Can run short trackers, shower reconstruction, finer time slicing, Michel taggers, etc.
 - Can, in principle, do a completely different set of reconstruction
 - Output = Anatuples
- (2) Macros use anatuples to do all the steps I described earlier – I focus here today

MINERvA in the Multi-verse

- We use the "many universe" method to evaluate systematics
 - That means, LOTS of histograms
 - Do you like bookkeeping?

MINERvA's Swiss Army Knife

- MnvH1D and MnvH2D are the general tools and container for our analyses
- Supported with generalized tools to provide various systematic universes
 - Secondary interaction in the detector
 - Flux uncertainties

What's a MnvH1D?

- MINERvA histogram object which is an extension to the ROOT TH1 object.
- It does the bookkeeping of all the systematic universes
- It handles all the error propagation and calculation
- If given an MnvH1D you have all the components you'd like to report a cross section

MnvH1D

Error summaries plots with ease –

0.8

 Correlation matrices with ease – Also, individual sources if you want

0.6
0.4 Correlation between flux
0.2 bins in energy and species
0 provided to DUNE

Þ

>

p"

Ratio analyses with ease

J. Wolcott JTEP Seminar

Ratio analyses with ease

Phys. Rev. Lett. 116, 081802 (2016)

- Understand how systematics change with each step of the extraction process since you start off with MnvH1D's from the start.
- This allows an analyst to improve selection and background constraint methods and quantify quickly how effective they are.

Example where this is useful!

Background subtraction: small uncertainty due to differing background fractions in the 2 samples

Acceptance correction: large increase in uncertainty as acceptance is very different for 2p2h events

C. Patrick FNAL W&C Seminar, 17 June 2016

Specific Case: CC0π

What and Why $CC0\pi$

- The explosion of models and generator improvements provide an expanded world to compare data to
- Original MINERvA CCQE measurements indicated our data preferred 2p2h-like effects

What and Why $CC0\pi$

- Lots learned about techniques and new modeling necessitates redirection of the analysis
- Advancement of reconstruction techniques allows for a different type of analysis
- General idea: Select events with/without visible extra tracks, reject pions, constrain pions, and report what's left, CC0π

Signal Definition and Deliverable

- CCQE-like, CC0π
 - <u>ANY</u> number of nucleons, energy doesn't matter
 - Not rejecting events based on reconstructed multiplicity
 - <u>NO</u> pions, heavy baryons
 - <u>NO</u> gammas > 10MeV
 - Data has de-excitation gammas, GENIE simulates this on oxygen, FV has a few % oxygen
 - Muon angle < 20 degrees</p>
 - Geometric acceptance of MINERvA+MINOS
- Output: Muon 2D differential in P_tP_{||}

These are the variables we directly measure experimentally They align, mostly, with interesting "QE" variables

What MC do we use?

- GENIE 2.8.4[1] is the foundation
- Latest flux [2]
- Non-resonant pion production reduced by 57%[3]
- Valencia RPA suppression applied to CCQE [4]
- Valencia 2p2h[5]
- Low recoil analysis fit based on [6]

[1] Nucl.Instrum.Meth.A614 (2010) 87-104
 [2] Phys. Rev. D 94, 092005 (2016)
 [3] Phys. Rev. D 90, 112017 (2014)
 [4] PRC 70, 055503 (2004); PRC 83, 045501 (2011)
 [5] PRC 70, 055503 (2004); PRD 88, 113007 (2013)
 [6] Phys. Rev. Lett. 116, 071802 (2016)

The low recoil fit

- Fit a 2D Gaussian in true (q₀,q₃) as a reweighting function to the 2p2h contributions to get the best agreement
- Does not scale true QE or resonant production.
- More on how we treat uncertainty later.

- Strategy –Track pions and protons
- Select events based on particle identification
- Constrain pion background using side band fits

37

- Strategy –Track pions and protons
- Select events based on particle identification
- Constrain pion background using side band fits

- Strategy –Track pions and protons
- Select events based on particle identification
- Constrain pion background using side band fits

- Strategy –Track pions and protons
- Select events based on particle identification
- Constrain pion background using side band fits

- Strategy –Track pions and protons
- Select events based on particle identification
- Constrain pion background using side band fits

Summary of Cuts

- dE/dX based π /p rejection Targets $\pi^{+/-}$
- Isolated energy clusters Targets π^0
- Michel tagging Targets π^+
- Loose recoil cut Targets inelastic events

PID broken down by particle

- This is applied to all tracks which are not the muon
- Loosen cut as Q²_{QE} increases because protons are harder and interact more

Hadronic Recoil

- Very loose cut on the untracked energy outside the vertex region.
 Sample here passes the rest of the selection
- Sample here passes the rest of the selection.

Number of Michel Electrons

Isolated energy deposits

Purity

Constrain the Background

- Extract scaling factors to control single pion events (charged or neutral) and multi-pion events.
- 3 sidebands used
 - Michel electron(s)
 - >1 isolated cluster of energy
 - Michel electron(s) AND >1 isolated cluster of energy
- Simultaneous fit in P_t bins (may combine)
- Muon only and Muon + N tracks treated separately

Isolated Clusters and Michel Electrons

MINER VA Preliminary

POT-Normalized

Data POT: 3.34E+20

MC POT: 3.34E+20

0.5

DATA

QE-Like

 $N\pi$ in FS

other

single π +/- in FS

2

2.5

single $\pi 0$ in FS

Events / 0.025 GeV

40

35

30

25

20

15

10

5

0<mark>L</mark>

2-track

Reconstructed Muon p_{τ} (GeV)

1.5

Component Scales

Overall scale factors

Signal 1 track

Signal 2 track

56

Migration Matrix

- Analysis uses the D'Agosti unfolding method implemented in RooUnfold.
- Based on bias studies, the necessary number of iterations is 2
- Mostly diagonal, with most elements in the 60-70% or more on the diagonal.

PtP||

Pt

P_{||}

60

Efficiency

- One of biggest sources of model dependence.
- If selection picks on features of the underlying model you depend on that model
 - Ex. Recoil system energy cuts QE type cuts great for QE, bad for QELike – See Minerba's talk
- So, how different are the various efficiencies of components of the sample
- Also, what fraction of the signal is coming from that sample

True QE Efficiency

Overall CC0 π Efficiency

$$\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha} \left(N_{data,j} - \frac{N_{data,j}^{bkgd}}{A_{\alpha} \Phi T}\right)}{A_{\alpha} \Phi T}$$

Put it all together

P_tP_{||} Cross Section

P_tP_{||} Cross Section

Systematic Uncertainties

Low Recoil Fit

- Taking the Low recoil q₀q₃ analysis fit 4 fits are performed
 - Allow nn+np 2p2h modes vary
 - Allow only nn 2p2h modes vary
 - Allow only np 2p2h modes vary
 - Allow only QE modes vary
- Despite the very different inputs, the results on the CC0pi analysis are very similar

FSI Models

 Dominated by pion absorption which causes a signal<->background migration.

Interaction Models

- All cross section related GENIE knobs
- Small in most of the measurement except very low P_t and high P_t
- Low P_t dominated by QE model, Pauli
 Suppression, RPA @few % for high P_{||}
- High P_t dominated by Pion/DIS knobs and RPA

Muon Reconstruction

- 11MeV shift from MINERvA material assay
- 30 MeV shift from energy deposition per cm
- 2% for energy by range MINOS
- 0.6% > 1GeV or 2.5% <1GeV if measured by curvature
- Added in quadrature

Others

- Includes particle response in detector, energy of hits, number of targets, matching efficiencies between MINOS and MINERvA, Bethe-Bloch.
- Notables Proton efficiency, Bethe-Bloch at high P_t is at ~3%
χ^2 Reporting

- MINERvA compares to various models, and reports χ^2 compared to the data
- Recently been discussing the effect of highly correlated data and calculation of the χ^2
 - Can lead to χ^2 which don't follow what your eye says has to be right
- Known as "Peelle's Pertinent Puzzle" to nuclear physicists
 - International evaluation of neutron cross-section standards", IAEA 2007
 - "Box-Cox transformation for resolving the Peelle's Pertinent Puzzle in curve fitting", Oh and Seo 2004
- Cross section typically have at least one highly correlated uncertainty - Flux

Uncertainties

- Given a central value of 1 with a 1σ value of 0.8. What is 2σ ?
- Additive uncertainties: 1-2*0.8
 - This results in $-\infty$ to ∞ for an arbitrary number of deviations
 - A Gaussian distribution has this property
- Multiplicative uncertainties: 1-0.8²
 - This results in 0 to ∞ for an arbitrary number of deviations
 - A Log-Normal distribution has this property

Example

- Fit with Gaussian in standard way
- Log transform and fit and transform back

Comparison

Transform back

Future

- Model comparisons with large correlations dominated by scale errors (flux!!) can return χ² we don't expect
- Application of log transformations improves this
- Of course the errors on cross sections are both multiplicative and additive
 - Literature suggests solution transformation
 - G.E.P. Box and D.R. Cox Journal of the Royal Statistical Society. Series B (Methodological) Vol. 26, No. 2 (1964), pp. 211-252

Conclusion

- MINERvA has a mature cross section program with the goal of model independent, and interesting/useful results
- MnvH1D provide a useful tool to handle the complex process of extracting a cross section
 - Discussion if this is a viable way to release our data
- Signal definitions and what you reconstruct should align
 - Fiducial cross sections!
- Cross sections are difficult, complex, and have many internal tensions which you need to describe
 ⁷⁹
 clearly