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Outline
Brief discussion on Deep learning neural network

Application of Machine learning in vertex finding

Introduction to Domain adversarial neural network

Preliminary results: comparison of performance between Machine learning  
     and traditional reconstruction method 

Plots showing comparison between  Convolutional neural network  
    and Domain adversarial neural network
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Machine Learning 
We take some data (our case Monte Carlo events) 
 train a model on that data  
and use the trained model to make predictions on new data. (our case,  

    it is real data or different MC)
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Basic neural network

Input layer

Hidden layer

Output layer

The single artificial neuron does a dot product between x (input data) and w 
(weight), then add a bias. 
 the result is passed to an activation function that adds some non-linearity.  
The non-linearity allows different variations of an object of the same class to be 
learned separately.
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Deep learning neural network

The layer does not need to learn the whole concept at once, but actually build a 
chain of features that build that knowledge.

Each layer learn a concept with the output of the previous layer.

5

"hierarchal model" - low levels in the network 
 build low-level representations that get  
combined in higher levels

neural network with many hidden layers
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Convolutional neural network (CNN)
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well-suited to image recognition and computer vision problems.

Convolutional network share the parameters across the space-> fewer weights. 

Normal neural network with fully connected neuron, needs huge number of 
parameters to fit images

"kernel"

k "features"

he
igh

t

width

depth
(e.g. RGB)

new depth = k

size depends 
on kernel, 
"padding", 
"stride", etc.

Scan the same kernel 
over the full input space.
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Convolutional neural network (CNN)
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Stacking layers of convolutions leads from geometric / spatial representation to 
semantic representation:
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Deep learning neural network: layers commonly used
Convolutional layers: Normal neural layer - Made up of neurons with  

    learnable weights. Convolution layers share weights across neurons

Pooling: as the number of feature maps grow, the complexity of the network 
explodes. Pooling reduces the “spatial size” or amount of parameters and 
computation in the network. 

Fully connected layer: Neurons in a fully connected layer have full  
    connections to all activations in the previous layer
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Deep learning neural network: layers commonly used

Loss function :Loss function indicate the penalty for an incorrect prediction

L(y`, y) : loss for prediction y` instead of y 

Loss has to be minimized to make better network. The loss is calculated on  
    training and validation and it indicates how well the model is doing for these  
    sets.

Dropout layer:Randomly drop connections between layers on each pass during 
training to eliminate co-adaptations in the network
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• Different targets built with combinations of different materials

Nuclear Targets

14

Nuclear Target Region"

Jorge G, Morfín - Fermilab 28 

Fiducial: within 85 cm apothem of beam spot 

Active 
Tracker 
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NUC. TARGET 1 
Fiducial Mass  
Fe: 323 kg 
Pb: 264 kg 

NUC. TARGET 2 
Fiducial Mass  
Fe: 323 kg 
Pb: 266 kg 

NUC. TARGET 3  
Fiducial Mass   
C: 166 kg 
Fe: 169 kg 
Pb: 121 kg 

NUC. TARGET 4  
Fiducial Mass  
Pb: 228 kg 

NUC. TARGET 5  
Fiducial Mass 
Fe: 161 kg 
Pb: 135 kg 

WATER TARGET  
Fiducial Mass    
625 kg H20 

1 2 3 4 5 

Helium Target  
Fiducial Mass  
0.25 tons  

4 tracker modules between each target 

CHCarbon Iron Lead

2016-01-07 Chris Marshall - University of Rochester 5

The MINERvA experiment

Plane views:
  1.  Vertical bars
  2.  +60°
  3.  –60°

208 active planes × 127 scintillator bars

17 mm Charge-sharing triangular 
strips for ~3mm position 

resolution

Nucl. Inst. and Meth. A743 (2014) 130
 arXiv:1305.5199

MINERvA Detector
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208 active planes × 127 scintillator bars
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strips for ~3mm position 
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Neutrino Flux MINERvA Neutrino Flux Spectrum

NuMI beamline currently running 
with increased beam energy mode 
which peaks at ~6 GeV (ME 
mode). 
We have taken ~12E20 POT in 
neutrino mode and currently 
taking data in anti-neutrino mode. 
About factor of 3 increase from 
LE data at 3.9E20 POT! 
Higher statistics yields improve 
comparisons across nuclei 
The peak of energy now moves to 
the DIS-rich kinematic region. 
Access to expanded kinematics 
and nuclear structure functions.

NuMI beam: medium energy regime
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1   2   3           4 5

true vertex

reconstructed vertex

With the increase of our beam energy,  there is  an increase in the hadronic showers near 
the event of interactions. 
Cause more difficulty in vertexing with increase rates of failure in getting the correct 
vertex position: 

Events with high invariant hadronic mass tend to have tracks that are created by 
secondary interactions or decays. 
Shower activity occludes the vertex region. 

Problem with vertex finding
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• Goal: Find the location of the event vertex 
• Treat localization as a classification problem: DNN gives prediction 

which segment out of the 11 segments(or which plane out of 67 
plane number) an interaction is from.

Challenges: Different type 
of interaction ➔ different 
characteristics

Machine Learning Approach To Determine Event 
Vertex

G. Perdue | PDS group meeting 2016 / March / 313

Identifying events in 11 "segments"

Target 1 2 3 4 5

Segment 0 2 4 6 7 101 3 5 8 9

Events in MINERvA 
are easily represented 
as images.

2  3          4 5 3       4 5

2  3          4 5

Single Track Backward Track Large Shower
13
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Event images from HDF5 (a high performance data storage format)

three views: X view, U view, V viewInput images to the network:

The ntuple is skimmed to make image files which are input to the neural network

14
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Network structure

We have three separate convolutional towers that look at each of the X, U, 
and V images. 
These towers feature image maps of different sizes at different layers of 

    depth to reflect the different information density in the different views. 
The output of each convolutional tower is fed to a fully connected layer. 
The output of those fully connected layers is concatenated and fed to 

     another fully connected layer, and then that is fed to a softmax layer.

We train using both Theano and Caffe. 

Theano: pure python API Caffe: C++ and python  API
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  Row-normalized: 
the difference in the 
probability of an 
event truly originating 
in a given segment for 
given reconstructed 
segment For a given 
reconstructed target 

Odd segment: passive target 
Even segment: active scintillators

classifying events in 11 segments
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Target
Track-Based Row 

Normalized Event Counts
+stat error (%)

DNN Row 
Normalized Event 
Counts+stat error 

(%)

Improvement+
stat error (%)

Upstream of Target 1 41.11±0.95 68.1±0.6 27±1.14
1 82.6±0.26 94.4±0.13 11.7±0.3

Between target 1 and 2 80.8±0.46 82.1±0.37 1.3±0.6
2 77.9±0.27 94.0±0.13 16.1±0.3

Between target 2 and 3 80.1±0.46 84.8±0.34 4.7±0.6
3 78±0.3 92.4±0.16 14.4±0.34

Between target 3 and 4 90.5±0.2 93.0±0.14 2.5±0.25
4 78.3±0.35 89.6±0.22 11.3+0.42

Between target 4 and 5 54.3±1.12 51.6±0.95 -2.7±0.15
5 81.6±0.3 91.2±0.18 9.5±0.34

Downstream of target 5 99.6±0.01 99.3±0.13 -0.3±0.02

classifying events in 11 segments
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Classifying events  
in 67 plane number
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DNN vertex Z residual: True vertex Z - Z center of predicted plane

Track based vertex Z residual: True vertex Z - reconstructed vertex Z

20

Classifying events  
in plane number
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Dealing with Systematic uncertainties

With machine learning (ML) method, we are going to deal with systematics in 
traditional way, i.e., varying the Monte Carlo(MC) for different cases (different 
GENIE model, flux etc) and calculate the systematic error.

We should calculate the systematic error coming from ML also. we need to train 
ML with few MCs, obtain the smearing over prediction, that will be the  

    systematic  error from ML.



Anushree Ghosh,UTFSM,Chile State of Nu-tion premeeting, Toronto

Labeled simulated data for training >> unlabeled real data for testing

Train with labeled data: in our case it is Monte Carlo
Test with unlabeled data: in our case it is real data

Limitation:

Bias the network?

Here DANN comes into the picture.

22

Domain Adversarial Neural Network (DANN)

Convolutional Neural Network(CNN):
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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DANN

 Train from the labeled source domain (MC )and unlabeled target domain (real 
data). 

Goal to achieve the features:  
1) discriminative for the main learning task on the source domain     
2) indiscriminate with respect to the shift between domains

This adaptation behavior can be achieved by adding a gradient reversal layer  
with few standard layers 

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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DANN
Two classifiers into the network: 

Label predictor: output 
Domain classifier: works internally

Minimize the loss of the label classifier so that network can predicts the input level 
Maximize the loss of the domain classifier so that network can not distinguish  

     between source and target domain. 
The network develops an insensitivity to features that are present in one domain  

    but not the other, and train only on features that are common to both domains.

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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How  to test DANN ?

Find source and target  with distinct features.  

We are trying in a few ways to get the target sample having different features 
    than source: changing the flux, physics model, kinematic division etc.

25

our source and target domains may be too similar for the domain classifier to be able to 
distinguish between them.

We train with Monte Carlo (MC) events and use different MC as target 
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validation sample : 1k

For NO-DANN overfitting starts ~45 epoch. For DANN, overfitting starts ~65 epoch  
So, here DANN starts overfitting later than NO-DANN

26

Test for overfitting Remove the dropout layer, train with small sample

classifying events in segments

Epoch
0 20 40 60 80 100

Lo
ss

0

0.5

1

1.5

2

2.5
Train with FSI
Test with FSI

Training sample 1K, test sample 1K

DCNN (segments)

NO-DANN

Training sample : 1k

Epoch: one forward pass and one backward pass of all the training examples 

Changing the physics model (With and W/O FSI)

Epoch
0 20 40 60 80 100

Lo
ss
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0.5
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1.5

2

2.5

Train with FSI
Test with FSITraining sample 1K, test sample 1K

DANN (segments)

DANN partner w/o FSI 1K

DANN
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Epoch
0 20 40 60 80 100
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0

0.2
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1.4 Train with FSI
Test without FSI
Test with FSITraining sample 50K

DCNN

No droupout layer

Epoch
0 20 40 60 80 100

Lo
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0

0.2

0.4
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1

1.2

1.4 Train with FSI
Test without FSI
Test with FSITraining sample 50K

DANN

No droupout layer

Changing the physics model (With and W/O FSI)
Test for overfitting 

DANN and NO-DANN both start overfitting almost at the same place , after~ 20 epoch

For DANN, the validation-loss plot increases in slower rate than NO-DANN
For NO-DANN, in case of validation, the loss value for NO-FSI is higher than with FSI  . For 
DANN, both validation plots have similar behaviour(NO-FSI validation plot is slightly higher 
than with FSI validation plot).    

DANN partner w/o FSI

Remove the dropout layer, train with small sample

classifying events in segments

27

DANNNO-DANN



Anushree Ghosh,UTFSM,Chile State of Nu-tion premeeting, Toronto28

Changing the parameters in hadronization model (W-split)
Train with large sample, with dropout layer

Epoch
0 1 2 3 4 5

Lo
ss

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Train W >1
Test W >1 
Test W<1

Training sample 1M, test sample 50k

DCNN (segments)

DCNN

Train with 1M sample W >1

Validation done with W >1 and  
W <1 sample

Size of validation sample 50 K

classifying events in segments

Network is not showing any bias to the training sample once we train with large sample.
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Changing the parameters in hadronization model (W-split)
Train with large sample, with dropout layer

DANN

Train with 1M sample W >1

Validation done with W >1 and  
W <1 sample

Size of validation sample 50 K

classifying events in segments

Network is not showing any bias to the training sample once we train with large sample.

Epoch
0 1 2 3 4 5

Lo
ss

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Train W >1
Test W >1 
Test W<1

Training sample 1M, test sample 50k

DANN (segments)

DANN partner W <1 
DANN partner W<1

Loss is lower for DANN compared to DCNN
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Summary

We see improvement with DNN based reconstruction over track-based 
reconstruction

We are working with domain adversarial neural network to understand the bias 
    present in the training sample (if any). 

30

In vertex finding, we still did not able to “break” our network. (Plausibly  
    “vertex finding” relatively insensitive to the changing physics models) 

We will test DANN with other measurements ( like hadron multiplicity) which 
would be sensitive to changing physics model.
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Thank you!

31
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Back-up
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Convolutional layer look for six  
different things.  
So, convolutional layer will have  
6 5X5X3 filter 

The filter will look for a particular  
thing on all the image, this means  
that it will look for a pattern in the 
 whole image with just one filter.

Convolutional neural network (CNN)
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Isolating DIS sample

Q2: square of the momentum transfer W:  invariant mass of final state  
hadronic system

We consider Q2 > 1.0 (GeV/c)2 to be enough momentum transfer 
to resolve the quark structure of the nucleons. 
W > 2.0 (GeV/c) safely avoids the majority of resonances, and 
gives us confidence the hadronic shower is from deep inelastic 
scattering off of a parton. 
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Train with W >1 sample 
training sample size : 1M

Train with W >1 sample 
training sample size : 1M

Train with W >1 sample 
training sample size : 1M

Train with W >1 sample 
training sample size : 1M

The difference between green and blue line is little bit less than compare to NO-DANN 

DANN

Changing the parameters in hadronization model (W-split)
Train with large sample, with dropout layer classifying events in plane number
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Train with W >1 sample 
training sample size : 1M

Train with W >1 sample 
training sample size : 1M

green line:Test with W <1  
test sample size 50 K

DCNN

Changing the parameters in hadronization model (W-split)
Train with large sample, with dropout layer classifying events in plane number


