

Particle ID with modern emulsion detectors

Tsutomu Fukuda (Nagoya Univ.)

2017.Jun. 23 State of the Nu-tion workshop @University of Toronto

Today's talk

 I will introduce about the modern technology of nuclear emulsion detectors and its PID capability in this talk.

Nuclear Emulsion Detector

Sensitivity

- Chemical treatment
- Crystal defect and doping etc.

T. Fukuda, State of the Nu-tion

Nuclear Emulsion Detector

Largest Digital Camera ATLAS detector (~1.6 x 10⁸ image sensors)

Largest Film Camera OPERA detector (~10²⁰ AgBr crystals) ♠ 9000,000 emulsion films 150,000 ECCs

Emulsion Cloud Chamber

Sandwich structure of emulsion films and target material.

Automatic track recognition

OPERA 1st ν_{τ} candidate event

Momentum measurement

Multiple coulomb scattering

[Angle Method]

0.8GeV/c pion : P =0.79(GeV/c), dP/P =11%

1.5GeV/c pion : P = 1.53(GeV/c), dP/P = 16%

With 1mm Pb ECC

1.4

1.6

1/p\$ 0.8GeV/c

1.2

25

20

15

0.4

20

15

12.5 10

7.5

5 2.5 0

0.8

17.5

0.6

0.8

Entrias

√²/ndf

Constan

T. Fukuda, State of the Nu-tion

Entries

18

P(GeV/c)

1.6

test.beam.KEK-T1. π -

17.31

1.280

1450

30

25

20

15

10

0 -

Ω4

0.6

1/P(GeV/c)-1

0.8

64

6554

test.beam.KEK-T1.π-

Momentum measurement@High energy

With 1mm Pb ECC

by using 57 emulsion films

by using 57 emulsion films

by using 57 emulsion films

by using 57 emulsion films

by using 57 emulsion films

10GeV/c pion : P =9.94 (GeV/c) dP/P =49%

by using 23 emulsion films 11

MC study by GEANT4

Momentum measurement

Measurement accuracy

With 0.5mm Fe ECC

Measurement accuracy

Number of plates using momentum measurement

dE/dX measurement

Darkness of tracks

T. Fukuda, State of the Nu-tion

Number of pixels associated track data

Practical application

NINJA Experiment @J-PARC

Practical application

NINJA Experiment @J-PARC

Practical application

NINJA Experiment @J-PARC

Future improvement

Aging of the emulsion tracks. Silver grains were disappeared. (fading effect) ~20% of track darkness is lowered after 120 days. Near future, such effect will be corrected by using timing information.

The elapsed days after tracks were recorded to development

Low energy proton

Range measurement

NINJA Experiment @J-PARC

With 0.5mm Fe ECC

Measurement error is depend on the thickness of target material.

Muon identification

Hybrid analysis with MRD

Electron energy measurement

Gamma rays \rightarrow e⁺e⁻ pair creation

π^{o} mass reconstruction

 1σ mass resolution: ~ 45%

New technique: High speed Large angle scanning

conventional

1.5

2

2.5

angle[tan0]

05

0.65 0.6 0.55

0.5

conventional

23

New technique: Emulsion spectrometer

NINJA Experiment

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

Summary

- Nuclear emulsion
- Momentum measurement
- dE/dx, Range measurement
- Muon ID
- Electron energy measurement
- New technology (Large angle, Charge sign)
- NINJA Experiment

That's all. Thank you !

Supplements

Nuclear fragments from hadron int.

• The existence of nuclear fragments is strong proof for hadron interaction, not ν_{τ} decay.

Property of nuclear fragments

2, 4 GeV/c : IP < 100 + 0.01dz 10 GeV/c : IP < 50 + 0.01dz

Emulsion Self-Production

Production scale ~ 1 kg detector/week

Hadron interaction study

	10GeV	4GeV	2GeV
Reconstructed tracks	2215 tracks	907 tracks	584 tracks
Total track length	38.5 m	12.6 m	8.5 m
Interactions	173 events	68 events	77 events

Hadron interaction study

Hadron interaction study

