

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

ALPHA Antihydrogen Experiment

TRIUMF Science Week, July 13, 2017

Makoto C. Fujiwara

Senior Scientist & Head, Particle Physics Deputy Associate Lab Director, Physical Sciences

> TRIUMF – Canada's National Lab for Particle & Nuclear Physics

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Confession

"Big Questions"

What is Particle Physics? (e.g. Grossman)

Makoto Fujiwara

"Simple Answer"

The Standard Model! is (technically) unnatural ...

- Cosmological constant
- Dark matter
- Flavor, CP
- Charge quantization, etc.

Are we asking right question?

"L=?" really right question to ask?

Is Quantum Field Theory correct description of Nature?

Motivations: Symmetries

- CPT: Fundamental property of QFT
 - Theorem: atomic spectra of H & anti-H identical
 - NB: QED tests limited by fundamental constants

- Einstein's Equivalence Principle
 - Matter and Antimatter fall in same way

Any violation would force radical change in theory!

RIUMF

Where do you look when asking Big Questions?

ALPHA: Rare Isotope Physics!

الالكة المستقرقة ALPHA Potential CPT Sensitivity (model dep't!)

Possible CPTV shift (Pospelov)

Cold Antihydrogen Brief History

- 1999: Antiproton Decelerator at CERN
- 2002: Production of cold anti-H (ATHENA) [Nature]
- 2004: ALPHA LOI
- 2006: ALPHA first beam
- 2010: Trapping of anti-H [Nature]
- 2011: Confinement for 1000 s [Nature Phys.]
- 2012: First spectroscopy via microwaves (10-3) [Nature]
- 2012-14: Construction of ALPHA-2
- 2016: Charge neutrality of anti-H (10-9) [Nature]
- 2017: First laser spectroscopy (10⁻¹⁰) [*Nature*]
- 2017: x200 improved microwave [Nature (in press)]

Production of cold antihydrogen (ATHENA, ATRAP 2002)

Makoto Fujiwara

MAKOTO FUJIWARA

RIUMF

Cold Antihydrogen: ATHENA, ATRAP (2002)

 Anti-H annihilation event (Nature, 2002): now on the cover of textbook!

• \$107.28 on Amazon.com

- ATHENA: produced first cold Anti-H (2002) (They were not trapped)
 Completed data taking in 2004
- Developed into new experiments (2005)
 - Trapping and Spectroscopy of Anti-H

TRIUMF

Antihydrogen Laser Physics Apparatus

Make Also Microwaves, Gravity, Charge...

ALPHA Collaboration

Makoto Fujiwara, ALPHA

Producing & Trapping Antihydrogen

Anti-H Trapping Challenges

Characteristic energy scales:

- Plasma energy: space charge (∝en_er²) ≈ 10 eV
- Neutral trap depth:
 - (*μ*∆*B*) ≈ 50 μeV
- Need 10⁻⁵ control of plasmas to make cold enough anti-H
- ATHENA's anti-H production was much easier!

Atomic energy scale: $(m_e \alpha^2)$ 10 eV

≈ Plasma space charge 10 eV

Detection of anti-H trapping

- Expected event rates very low
- Statistics & backgd limited

30,000 channel 3-layer Si strips ~0.8 m² active area Liverpool + ALPHA Canada Position Sensitivity Essential

Detecting Rare Events with Exotic Atoms

Muonium (µ+ e-) 1S-2S spectroscopy Chu, Mills et al. Phys. Rev. Lett. (1988)

~8 events!

Subatomic Physics Techniques/Expertise

- ALPHA optimized for particle detection
 - Distinctive feature among AD expt's
 - Position sensitive
 annihilation detection with
 37,000 channel Si strips
- Software & analysis
 - DAQ & all software incl. tracking, MC
 - Introduced blind analysis
 - Machine learning
 - techniques

- Exotic atom physics
 - Canadian expertise:
 muonic, pionic, kaonic, antiprotonic atoms
 - Doing experiment with very few atoms
- All this helps make us competitive! (so far)

TRIUMF

Progress since First Beam in 2006

Antihydrogen Trapped (for 172 ms)

Letter to Nature, Nov. 17, 2010

doi:10.1038/nature09610

Trapped antihydrogen

FITER

G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchanski⁸, A. Olin⁸, A. Povilus³, P. Pusa¹², F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Silveira¹⁵, C. So³, J. W. Storey⁸[†], R. I. Thompson⁷, D. P. van der Werf⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16}

Antimatter was first predicted¹ in 1931, by Dirac. Work with highenergy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced²³ at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time

octupole has been shown to greatly charged plasmas^{9,10}. The liquid heliun cools the vacuum wall and the Pennir measured to be at about 9 K. Antihydro low enough kinetic energy can remain rather than annihilating on the Pennir can confine ground-state antihydroger

Among top news stories in 2010

- #1 Physics Breakthrough: PhysicsWorld
- #1 Most read news: Nature
- #2 Science News: CBC National

Confinement of Antihydrogen for 1000 s

Cover, Nature Physics, July 2011 Issue • [Principle author: MCF

- Increased trapping rates by x5 (hard to tweak zero)
- Trapping time increased by x5000
- "Game changer"
 - Opens up many possibilities
- Detailed studies of dynamics

iwara

Letter to Nature, March 2012 Principle Author: Mike Hayden (SFU)

nature International weekly journal of science				
Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video				
Archive > Volume 483 > Issue 7390 > Letters > Article				
ARTICLE PREVIEW view full access options				

NATURE | LETTER

FRIUMF

previous article next article

Resonant quantum transitions in trapped antihydrogen atoms

C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, A. Capra, C. L. Cesar, M. Charlton, A. Deller, P. H. Donnan, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, C. A. Isaac, S. Jonsell, L. Kurchaninov, A. Little, N. Madsen, J. T. K. McKenna, S. Menary, S. C. Napoli, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, C. R. Shields, D. M. Silveira, S. Stracka, C. So, R. I. Thompson, D. P. van der Werf & J. S. Wurtele Show fewer authors

Affiliations | Contributions | Corresponding authors

Nature 483, 439–443 (22 March 2012) | doi:10.1038/nature10942 Received 09 January 2012 | Accepted 07 February 2012 | Published online 07 March 2012

- First spectroscopic measurements on anti-H!
 - Limited precision: O(10⁻³)
 - Demonstrates it's possible to do spectroscopy on a single anti-atom at a time
 - "Historic!" Nature Editor
 - Annihilation detection: key

Experimental Limits on $|\delta q/q|$

Makoto C. Fujiwara / U. Tokyo

JHF-Pbar Workshop, Feb 16 2002

Experimental Limits on |δQ/Q| (Nature Comm. 2014, Nature 2016)

TRIUMF

2016 (ALPHA-2): Q<0.7x10⁻⁹ New e+ charge limit ~10⁻⁹ (40 fold improv't over PDG)

What about e+ mass?

I have issues with PDG and Fee, Chu et al.!

- 1. PDG "assumption that the Ps Rydberg is exactly half of the hydrogen one" does not make sense
- 2. It seems FEE93 assumed incorrect sensitivity between Δ freq(1s-2s) and $\Delta m_{e_{+}}/m_{e}$
- 3. e+ mass & charge should be treated independently
- 4. Not clear if the limit is 90% CL rather than 1σ

RIUMF

Pbar mass & charge from ASACUSA pbar-He

T. Yamazaki et al. | Physics Reports 366 (2002) 183-329

Since 2000, PDG has done so!

Positron charge & mass before ALPHA (MCF at LEAP 2016)

Before ALPHA

- $-\Delta m_{e^+}/m_{e^+} \sim 10^{-7}$
- $-\Delta Q_{e^+}/Q_{e^+} \sim 3x10^{-8}$ (Pbar mass, charge anomaly negligible)

Cf: PDG 2014 – $\Delta m_{e^+}/m_{e^+}$: 8 x10⁻⁹ (x 10 overestimate of precision!)

 $-\Delta Q_{e^+}/Q_{e^+}$: 4 x 10⁻⁸

Positron Charge & Mass after ALPHA-1

- After ALPHA-1
 - Both $\Delta m_{e^+}/m_{e^+}$ and $\Delta Q_{e^+}/Q_{e^+}$ improved marginally ~ x2

RIUMF

Positron Charge & Mass after ALPHA-2

- After ALPHA-2
 - Ignore pbar charge & mass anomaly (4x10⁻¹⁰)
 - $\Delta Q_{e^+}/Q_{e^+} \sim 7x10^{-10} (1\sigma)$, 40-fold improvement over pre-ALPHA
 - $\Delta m_{e+}/m_{e+} \sim \pm 2 \times 10^{-8}$, ~5 fold improvement
 - But central value shifted due to disagreement between theory and exp in Ps(1s-2)

Cold Antihydrogen Brief History

- 1999: Antiproton Decelerator at CERN
- 2002: Production of cold anti-H (ATHENA) [Nature]
- 2004: ALPHA LOI
- 2006: ALPHA first beam
- 2010: Trapping of anti-H [Nature]
- 2011: Confinement for 1000 s [Nature Phys.]
- 2012: First spectroscopy via microwaves (10-3) [Nature]
- 2012-14: Construction of ALPHA-2
- 2016: Charge neutrality of anti-H (10-9) [Nature]
- 2017: First laser spectroscopy (10⁻¹⁰) [*Nature*]
- 2017: x200 improved microwave [Nature (in press)]

RIUMF

Breakthroughs: increased anti-H trapping rates

- Trapping improvements
 - Improved ALPHA-2 cryostat
 - Improvements in # per trial and duty cycle
 - Detection improvements

"Stacking"

- Repeated loading of anti-H in trap
- Each cycle ~ 200 sec;
 (anti-H lifetime > 1000 sec)

On June 7, 2017, >100 anti-H trapped (online, preliminary!)

TRIUMF

First Laser Spectroscopy (Nature 2017)

Anti-H losses vs axial position

RIUMF

Observation of 1s-2s transition in trapped anti-H

First laser spectroscopy on anti-H

Nature 541, 506 (2017)

"A dream come true for entire field!" – M. Hori

 $f(1s_c-2s_c) = 2,466,061,707.1$ (4) MHz $f(1s_d-2s_d) = 2,466,061,103.0$ (4) MHz

- 1st demonstration:
 - Precision already $2x10^{-10}$; $\Delta f \sim 400 \text{ kHz}$
 - Among most precise measurements with antiparticles
 - Sensitive to antiproton internal structure at 20% level

 $\Delta E \sim 1.1 r_p^2 (MHz)$

- Next steps in 2017
 - Resonant lineshape
 50 100 kHz benchmark
 - Laser cooling
 - Lyman-alpha laser developed at UBC
 - New HFS spectroscopy

Antiproton Mass & Charge

• Analysis so far assumed:

 $\delta m_{pbar}/m_{pbar}, \, \delta Q_{pbar}/Q_{pbar} << \delta m_{e^+}/m_{e^+}, \, \delta Q_{e^+}/Q_{e^+}$

- Next generation Anti-H exp'ts can no longer assume this.
- In general, need 4 independent measurements to determine m_{pbar}, Q_{pbar}, m_{e+}, Q_{e+}. Possibilities:

Measurement	Leading order dependence	Current precision (1σ)	Near future prospects
Pbar/p cyclotron	Q _{pbar} / m _{pbar}	7×10 ⁻¹¹	Base: 10 ⁻¹¹ ?
Pbar He	m _{pbar} Q _{pbar} ²	4×10 ⁻¹⁰	ASACUSA: 10 ⁻¹⁰ ?
e+/e- cyclotron	Q _{e+} /m _{e+}	1.3×10 ⁻⁷	Harvard ?
Ps(1s-2s)	(m _{e+} /2) Q _{e+} ²	5×10 ⁻⁹	ETH: 5×10 ⁻¹⁰ ?
Anti-H (charge)	Q _{pbar} + Q _{e+}	7×10 ⁻¹⁰	ALPHA: 10 ⁻¹² ?
Anti-H (1s-2s)	$m_{e+} Q_{pbar}^2 Q_{e+}^2$	2x10 ⁻¹⁰	ALPHA: 10 ⁻¹² ?

Anti-H studies entering precision era!

ALPHA-g: Gravitational force on antimatter

Antimatter Gravity Measurement

- Gravity
 - Never measured with antimatter
- Very difficult experiment since gravity is so weak
- Now plausible due to long confinement time

nature physics PUBLISHED ONLINE: 5 JUNE 2011 | DOI: 10.1038/NPHYS2025

Confinement of antihydrogen for 1,000 seconds

The ALPHA Collaboration*

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.

Antimatter Gravity Experiment

Does antimatter fall down?

- Many indirect constraints incl. EP tests
- Experimental question!
 - (e.g. Lykken et al, arXiv:0808.3929)
- Anti-H "gas" will sag due to gravity
- Need anti-H cooling to ~mK

1/2kT = mgh

Vertical trap: $h \sim 1 m$

- Position sensitive detection via annihilations
- Laser cooling essential step: development at UBC
 – NB: Cold atom tests of gravity: ~10⁻¹⁰

ALPHA-g Experimental Concept

- A long (~ 2m) vertical trap
 - Anti-H production region

Production, trapping, & cooling

- Measurement region
 - Sagging of anti-H "gas"
 - Anti-atomic "fountain"
 - Anti-atomic
 interferometry
 - uW spectroscopy
- Major Canadian funding

Radial TPC Construction at TRIUMF

1/8 Prototype

GEANT simulation

n long, Radial thickness:10 cm adial drift Time Projection Chamber

ellent track recognition!% reconstruction efficiency)

Makoto Fujiwara

ALPHA-g Trap Design: C. So

24 superconducting magnets!

ALPHA-g design & simulations

Aiming for measurement in 2018!

ALPHA Future Prospects

Challenge

"we congratulate NSERC for bravely recognizing the best and most basic research, and we applaud our prizewinners for adding an important milestone to the history of science." --- Message from Dr. John Polanyi to the ALPHA-Canada team

ALPHA CPT Road Map

- Charge
- Lamb shift
- 2s-4s
- Anti-H+ ion
- Molecule
- BEC?

Future?

Makoto Fujiwara

RIUMF Future: Anti-atomic fountain & interforometry

Hamilton et al, Phys. Rev. Lett. (2014)

Summary

- Anti-H addresses fundamental questions
- 18 years since the start of Antiproton Decelerator at CERN, we entered the precision physics era
 - Laser spectroscopy at 10⁻¹⁰ level
 - Microwave, charge neutrality at 10⁻⁹ etc.
- Developing gravity measurement: ALPHA-g
- ELENA, upgrade to AD, under construction
- Exciting future ahead for 2020-25 and beyond!
- Excellent students \rightarrow photos

RIVMF Our Hard-working Students Recognized

