ALPHA Antihydrogen Experiment

TRIUMF Science Week, July 13, 2017

Makoto C. Fujiwara

Senior Scientist \& Head, Particle Physics Deputy Associate Lab Director, Physical Sciences

> TRIUMF - Canada's National Lab for Particle \& Nuclear Physics

CERNCOURIER

Antihydrogen gets caught in the act

Rtriumf

Confession

"Big Questions"

What is Particle Physics?

(e.g. Grossman)

"Simple Answer"

The Standard Model! is (technically) unnatural ..

Are we asking right question?

" $L=$?" really right question to ask?

Is Quantum Field Theory correct description of Nature?

Motivations: Symmetries

Quantum
 Field Theory
 $\longmapsto \begin{gathered}\text { CPT } \\ \text { Symmetry }\end{gathered}$

- CPT: Fundamental property of QFT
- Theorem: atomic spectra of H \& anti-H identical
- NB: QED tests limited by fundamental constants

General \longleftrightarrow Equival. Principle
 H \& anti-H
 Free fall

- Einstein's Equivalence Principle
- Matter and Antimatter fall in same way

Any violation would force radical change in theory!

Where do you look when asking Big Questions?

ALPHA: Rare Isotope Physics!

${ }_{1}^{1} \mathrm{H}$

QTRIUMF

ALPHA Potential CPT Sensitivity (model dep’t!)

Possible CPTV shift (Pospelov)

$$
\Delta E \sim \frac{m^{n+1}}{\Lambda^{n}{ }_{C P T V}}
$$

Small absolute energy ΔE \rightarrow probes high energy scale

For $n=1, m=1 \mathrm{GeV}$,
$\Lambda_{\text {CPTV }}=M^{*}{ }_{P I} \sim 10^{18} \mathrm{GeV}$
$\Delta E_{C P T} \sim 10^{-18} \mathrm{GeV}$
($\sim 100 \mathrm{kHz}$ in frequencs)
Neutral Kaon test at few 100 kHz
Antihydrogen studies potentially

sensitive to Planck-suppresed physics!

Cold Antihydrogen Brief History

- 1999: Antiproton Decelerator at CERN
- 2002: Production of cold anti-H (ATHENA) [Nature]
- 2004: ALPHA LOI
- 2006: ALPHA first beam
- 2010: Trapping of anti-H [Nature]
- 2011: Confinement for 1000 s [Nature Phys.]
- 2012: First spectroscopy via microwaves $\left(10^{-3}\right)$ [Nature]
- 2012-14: Construction of ALPHA-2
- 2016: Charge neutrality of anti-H (10-9) [Nature]
- 2017: First laser spectroscopy $\left(10^{-10}\right)$ [Nature]
- 2017: x200 improved microwave [Nature (in press)]

Production of cold antihydrogen

 (ATHENA, ATRAP 2002)

\&triumf

Cold Antihydrogen: ATHENA, ATRAP (2002)

Paul A. Tipler
Ralph A. Llewellyn

- Anti-H annihilation event (Nature, 2002): now on the cover of textbook!
- \$107.28 on Amazon.com

See largae image
$\frac{\text { Share vour ovn customer imaess }}{\text { Publisheri learn how customers can search inside ethis }}$ Look.

Modern Physics [Hardcover]
Paul A. Tipler (Author), Ralph Llewellyn (Author)

Price: $\$ 107.28$ \& this item ships for FREE with Super Saver Shipping. Details
In Stock.
Ships from and sold by Amazon.com. Gitt-wrap available,
Only 12 left in stock--order soon (more on the way).
Want it delivered Monday, May 16 ? Order it in the next 17 hours
and 42 minutes, and choose One-Day Shipping at checkout. Details

(1a) FREE Two-Day Shipping for Students. Learn more

From ATHENA to ALPHA

- ATHENA: produced first cold Anti-H (2002) (They were not trapped)
Completed data taking in 2004
- Developed into new experiments (2005)
- Trapping and Spectroscopy of Anti-H

Antihydrogen Laser Physics Apparatus

\&triumf

ALPHA Collaboration

Producing \& Trapping Antihydrogen

10^{-12}

$\mathrm{Na}-22$
e^{+}Production (MeV)
Moderation
Accumulation (eV)
Cooling (\sim meV)

Superimpose Magnetic Trap
 $$
U=-\vec{\mu} \cdot \vec{B}
$$

Anti-H Trapping Challenges

Characteristic energy scales:

- Plasma energy: space charge $\left(\propto e n_{e} r^{2}\right) \approx 10 \mathrm{eV}$
- Neutral trap depth:
$(\mu \Delta B) \approx 50 \mu \mathrm{eV}$
- Need 10^{-5} control of plasmas to make cold enough anti-H
- ATHENA's anti-H production was much easier!
Atomic energy scale: $\left(m_{e} \alpha^{2}\right) 10 \mathrm{eV}$ \approx Plasma space charge 10 eV

Detection of anti-H trapping

- Expected event rates very low
- Statistics \& backgd limited

30,000 channel 3-layer Si strips
$\sim 0.8 \mathrm{~m}^{2}$ active area
Liverpool + ALPHA Canada
Position Sensitivity Essential

\&triumf

Detecting Rare Events with Exotic Atoms

Muonium ($\mu+$ e-)
1S-2S spectroscopy
Chu, Mills et al.
Phys. Rev. Lett. (1988)

~ 8 events!

©triumf

Subatomic Physics Techniques/Expertise

- ALPHA optimized for particle detection
- Distinctive feature among AD expt's
- Position sensitive annihilation detection with 37,000 channel Si strips
- Software \& analysis
- DAQ \& all software incl. tracking, MC
- Introduced blind analysis
- Machine learning techniques
- Exotic atom physics
- Canadian expertise: muonic, pionic, kaonic, antiprotonic atoms
- Doing experiment with very few atoms
- All this helps make us competitive! (so far)

QTRIUMF

Progress since First Beam in 2006

Phys. Rev. Lett. 98, 023402 (2007) Compatibility of Penning and Neutral traps

Phys. Rev. Lett. 101, 053401 (2008)
Pulsed source of antihydrogen (ATHENA)
Phys. Rev. Lett. (2010), July 2 Evaporative cooling of antiprotons

The Coolest Antiprotons
A new record low temperature for a cloud of antiprotons was measured at CERN in Geneva, announces a report in the 2 July Physical Review Letters. Researchers cooled a cloud of about 4,000 antiprotons down to 9 kelvin using a standard approach for cooling atoms that has never been used with charged particles or ions. The technique could provide a new way to create and trap antihydrogen, which could help researchers probe a basic symmetry of nature.
Antihydrogen, the antimatter counterpart of hydrogen, is composed of one antiproton and one positron (anti-electron). According to the CPT (charge-parity-time) theorem, a fundamental pillar of the standard model of particle physics, hydrogen and antihydrogen
iStockphoto/Thomas_EyeDesign
Antiproton steam. A standard method for should chare manv hacic traitc like mace

Antihydrogen Trapped (for 172 ms)

LETTER

Letter to Nature, Nov. 17, 2010

doi:10.1038/nature09610

Trapped antihydrogen

G. B. Andresen ${ }^{1}$, M. D. Ashkezari ${ }^{2}$, M. Baquero-Ruiz ${ }^{3}$, W. Bertsche ${ }^{4}$, P. D. Bowe ${ }^{1}$, E. Butler ${ }^{4}$, C. L. Cesar ${ }^{5}$, S. Chapman ${ }^{3}$, M. Charlton ${ }^{4}$, A. Deller ${ }^{4}$, S. Eriksson ${ }^{4}$, J. Fajans ${ }^{3,6}$, T. Friesen ${ }^{7}$, M. C. Fujiwara ${ }^{8,7}$, D. R. Gill ${ }^{8}$, A. Gutierrez ${ }^{9}$, J. S. Hangst ${ }^{1}$,
W. N. Hardy ${ }^{9}$, M. E. Hayden ${ }^{2}$, A. J. Humphries ${ }^{4}$, R. Hydomako ${ }^{7}$, M. J. Jenkins ${ }^{4}$, S. Jonsell ${ }^{10}$, L. V. Jørgensen ${ }^{4}$, L. Kurchaninov ${ }^{8}$,
N. Madsen ${ }^{4}$, S. Menary ${ }^{11}$, P. Nolan ${ }^{12}$, K. Olchanski ${ }^{8}$, A. Olin ${ }^{8}$, A. Povilus ${ }^{3}$, P. Pusa ${ }^{12}$, F. Robicheaux ${ }^{13}$, E. Sarid ${ }^{14}$, S. Seif el Nasr ${ }^{9}$, D. M. Silveira ${ }^{15}$, C. So ${ }^{3}$, J. W. Storey ${ }^{8} \dagger$, R. I. Thompson ${ }^{7}$, D. P. van der Werf ${ }^{4}$, J. S. Wurtele ${ }^{3,6}$ \& Y. Yamazaki ${ }^{15,16}$

Antimatter was first predicted ${ }^{1}$ in 1931, by Dirac. Work with highenergy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced ${ }^{2,3}$ at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time
octupole has been shown to greatl charged plasmas ${ }^{9,10}$. The liquid heliu cools the vacuum wall and the Penni measured to be at about 9 K . Antihydr low enough kinetic energy can remair rather than annihilating on the Penni can confine ground-state antihydroge

Among top news stories in 2010

- \#1 Physics Breakthrough: PhysicsWorld
- \#1 Most read news: Nature

- \#2 Science News: CBC National

Confinement of Antihydrogen for 1000 s

Cover, Nature Physics, July 2011 Issue

- Increased trapping rates by x5 (hard to tweak zero)
- Trapping time increased by x5000
- "Game changer"
- Opens up many possibilities
- Detailed studies of dynamics

Canadian-led Success!

Experimental Limits on $|\delta q / q|$

Retriump

Experimental Limits on |סQ/Q|

(Nature Comm. 2014, Nature 2016)

Anti-H neutrality tests: 2014 (ALPHA-1): Q<~10-8
New e+ charge limit $\sim 10^{-9}$ (40 fold improv't over PDG)

What about e+ mass?

$$
\left(m_{e^{+}}-m_{e^{-}}\right) / m_{\text {average }}
$$

PDG $2014<8 \times 10^{-9}$
A test of $C P T$ invariance.

I have issues with PDG and Fee, Chu et al.!

1. PDG "assumption that the Ps Rydberg is exactly half of the hydrogen one" does not make sense
2. It seems FEE93 assumed incorrect sensitivity between Δ freq($1 \mathrm{~s}-2 \mathrm{~s}$) and $\Delta m_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}}$
3. e+ mass \& charge should be treated independently
4. Not clear if the limit is $90 \% \mathrm{CL}$ rather than 1σ

BTRIUMF

Pbar mass \& charge from ASACUSA pbar-He

T. Yamazaki et al. / Physics Reports 366 (2002) 183-329

Since 2000, PDG has done so!

Toshi et al: pbar mass \& charge should be treated independently

PDG2000

A test of $C P T$ invariance. Note that the \bar{p} / p charge-to-mass ratio, given below, is much better determined.

${ }^{3}$ TORII 99 uses the more-precisely-known constraint on the \bar{p} charge-to-mass rati GABRIELSE 95 (see below) to get this result. This is not independent of the TORI value for $\left|q_{p}+q_{\bar{p}}\right| / e$, below.

$$
\left|q_{p}+q_{\bar{p}}\right| / e
$$

A test of CPT invariance. Note that the \bar{p} / p charge-to-mass ratio, gi above, is much better determined. See also a similar test involving electron.
$\frac{\text { VALUE }}{<\mathbf{< 1 0} \mathbf{1 0}} \quad 6 \frac{\text { DOCUMENT ID }}{\text { TORII }} 99 \frac{\text { TECN }}{\text { SPEC COMMENT }} \frac{\text { CO }}{\bar{p} e^{-} \text {He atom }}$
\bullet • We do not use the following data for averages, fits, limits,
$<2 \times 10^{-5}$
7 HUGHES
92 RVUE
${ }^{6}$ TORII 99 uses the more-precisely-known constraint on the \bar{p} charge-to-m GABRIELSE 95 (see above) to get this result. This is not independent of t value for $\left|m_{p}-m_{\bar{p}}\right| / m_{p}$, above.
7 HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-f tios.

BTRIUMF

Positron charge \& mass before ALPHA

(MCF at LEAP 2016)

Before ALPHA
$-\Delta \mathrm{m}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}+} \sim 10^{-7}$
$-\Delta Q_{e^{+}} / Q_{e^{+}} \sim 3 \times 10^{-8}$
(Pbar mass, charge anomaly negligible)

Cf: PDG 2014
$-\Delta \mathrm{m}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}+}: 8 \times 10^{-9}$
($\times 10$ overestimate of precision!)
$-\Delta Q_{e^{+}} / Q_{e^{+}}: 4 \times 10^{-8}$

Qtriumf

Positron Charge \& Mass after ALPHA-1

- After ALPHA-1
- Both $\Delta \mathrm{m}_{\mathrm{e}^{+}} / \mathrm{m}_{\mathrm{e}^{+}}$and $\Delta Q_{e_{+}} / Q_{e_{+}}$improved marginally $\sim x 2$

QTRIUMF

Positron Charge \& Mass after ALPHA-2

- After ALPHA-2
- Ignore pbar charge \& mass anomaly (4×10^{-10})
$-\Delta Q_{e^{+}} / Q_{e^{+}} \sim 7 \times 10^{-10}(1 \sigma)$, 40-fold improvement over pre-ALPHA
$-\Delta m_{e^{+}} / m_{e^{+}} \sim \pm 2 \times 10^{-8}$, ~ 5 fold improvement
- But central value shifted due to disagreement between theory and exp in Ps(1s-2)

Cold Antihydrogen Brief History

- 1999: Antiproton Decelerator at CERN
- 2002: Production of cold anti-H (ATHENA) [Nature]
- 2004: ALPHA LOI
- 2006: ALPHA first beam
- 2010: Trapping of anti-H [Nature]
- 2011: Confinement for 1000 s [Nature Phys.]
- 2012: First spectroscopy via microwaves $\left(10^{-3}\right)$ [Nature]
- 2012-14: Construction of ALPHA-2
- 2016: Charge neutrality of anti-H (10-9) [Nature]
- 2017: First laser spectroscopy $\left(10^{-10}\right)$ [Nature]
- 2017: x200 improved microwave [Nature (in press)]

BTRIUMF

Breakthroughs: increased anti-H trapping rates

- Trapping improvements
- Improved ALPHA-2 cryostat
- Improvements in \# per trial and duty cycle
- Detection improvements

- "Stacking"
- Repeated loading of anti-H in trap
- Each cycle ~ 200 sec;
(anti-H lifetime > 1000 sec)

On June 7, 2017, >100 anti-H trapped (online, preliminary!)

First Laser Spectroscopy (Nature 2017)

BTRIUMF

Observation of $1 \mathrm{~s}-2 \mathrm{~s}$ transition in trapped anti－H

－First laser spectroscopy on anti－H Nature 541， 506 （2017） ＂A dream come true for entire field！＂－M．Hori

```
nature
International weekly journal of science
\equivMenu
- Advanced search Search

```

NATURE｜LETTER OPEN
＜昌
日本語要約
Observation of the 1S－2S transition in trapped antihydrogen
M．Ahmadi，B．X．R．Alves，C．J．Baker，W．Bertsche，E．Butler，A．Capra，C．Carruth，C．L．Cesar，M． Charlton，S．Cohen，R．Collister，S．Eriksson，A．Evans，N．Evetts，J．Fajans，T．Friesen，M．C．Fujiwara， D．R．Gill，A．Gutierrez，J．S．Hangst，W．N．Hardy，M．E．Hayden，C．A．Isaac，A．Ishida，M．A．Johnson， S．A．Jones，S．Jonsell，L．Kurchaninov，N．Madsen，M．Mathers，D．Maxwell，J．T．K．McKenna，S． Menary，J．M．Michan，T．Momose，J．J．Munich，P．Nolan，K．Olchanski，A．Olin，P．Pusa，C．Ø． Rasmussen，F．Robicheaux，R．L．Sacramento，M．Sameed，E．Sarid，D．M．Silveira，S．Stracka，G． Stutter，C．So，T．D．Tharp，J．E．Thompson，R．I．Thompson，D．P．van der Werf \＆J．S．Wurtele
－Show fewer authors
Affiliations｜Contributions｜Corresponding author

```
\[
\begin{aligned}
& f\left(1 s_{c}-2 s_{c}\right)=2,466,061,707.1(4) \mathrm{MHz} \\
& f\left(1 s_{d}-2 s_{d}\right)=2,466,061,103.0(4) \mathrm{MHz}
\end{aligned}
\]
\(1^{\text {st }}\) demonstration：
－Precision already \(2 \times 10^{-10}\) ；
\[
\Delta f \sim 400 \mathrm{kHz}
\]
－Among most precise measurements with antiparticles
－Sensitive to antiproton internal structure at 20\％level
\[
\Delta \mathrm{E} \sim 1.1 \mathrm{r}_{\mathrm{p}}^{2}(\mathrm{MHz})
\]
－Next steps in 2017
－Resonant lineshape
50 － 100 kHz benchmark
－Laser cooling
Lyman－alpha laser developed at UBC
－New HFS spectroscopy

\section*{Btriumf}

\section*{Antiproton Mass \& Charge}
- Analysis so far assumed:
\[
\delta m_{\text {pbar }} / m_{\text {pbar }}, \delta Q_{\mathrm{pbar}} / \mathrm{Q}_{\mathrm{pbar}} \ll \delta \mathrm{~m}_{\mathrm{e}^{+}} / \mathrm{m}_{\mathrm{e}^{+}}, \delta \mathrm{Q}_{\mathrm{e}^{+}} / \mathrm{Q}_{\mathrm{e}^{+}}
\]
- Next generation Anti-H exp'ts can no longer assume this.
- In general, need 4 independent measurements to determine \(\mathrm{m}_{\mathrm{pbar}}, \mathrm{Q}_{\mathrm{pbar}}, \mathrm{m}_{\mathrm{e}+}, \mathrm{Q}_{\mathrm{e}+}\). Possibilities:
\begin{tabular}{|c|c|c|c|}
\hline Measurement & Leading order dependence & Current precision (1б) & Near future prospects \\
\hline Pbar/p cyclotron & \(\mathrm{Q}_{\mathrm{pbar}} / \mathrm{m}_{\text {pbar }}\) & \(7 \times 10^{-11}\) & Base: 10-11? \\
\hline Pbar He & \(\mathrm{m}_{\text {pbar }} \mathrm{Q}_{\text {pbar }}{ }^{2}\) & \(4 \times 10^{-10}\) & ASACUSA: 10-10 ? \\
\hline e+/e-cyclotron & \(\mathrm{Q}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}^{+}}\) & \(1.3 \times 10^{-7}\) & Harvard? \\
\hline \(\mathrm{Ps}(1 \mathrm{~s}-2 \mathrm{~s})\) & \(\left(m_{\mathrm{e}+} / 2\right) \mathrm{Q}_{\mathrm{e}^{+}}{ }^{2}\) & \(5 \times 10^{-9}\) & ETH: \(5 \times 10^{-10}\) ? \\
\hline Anti-H (charge) & \(\mathrm{Q}_{\mathrm{pbar}}+\mathrm{Q}_{\mathrm{e}^{+}}\) & \(7 \times 10^{-10}\) & ALPHA: \(10^{-12}\) ? \\
\hline Anti-H (1s-2s) & \(m_{e+} \mathrm{Q}_{\mathrm{pbar}}{ }^{2} \mathrm{Q}_{\mathrm{e}+}{ }^{2}\) & \(2 \times 10^{-10}\) & ALPHA: \(10^{-12}\) ? \\
\hline
\end{tabular}

\section*{Anti-H studies entering precision era!}

\section*{ALPHA-g: Gravitational force on antimatter}

\section*{Antimatter Gravity Measurement}
- Gravity

\section*{- Never measured with antimatter}
- Very difficult experiment since gravity is so weak
- Now plausible due to long confinement time

\section*{nature \\ physics}

\section*{Confinement of antihydrogen for 1,000 seconds}

\author{
The ALPHA Collaboration \({ }^{\star}\)
}

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms . A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for \(1,000 \mathrm{~s}\), extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.

\section*{Antimatter Gravity Experiment}
- Does antimatter fall down?
- Many indirect constraints incl. EP tests
- Experimental question! (e.g. Lykken et al, arXiv:0808.3929)
- Anti-H "gas" will sag due to gravity
- Need anti-H cooling to \(\sim \mathrm{mK}\)
\[
\begin{aligned}
& 1 / 2 k T=m g h \\
& \text { Vertical trap : } h \sim 1 m
\end{aligned}
\]
- Position sensitive detection via annihilations
- Laser cooling essential step: development at UBC I_ NB: Cold atom tests of gravity: ~10-10



\section*{Experimental Concept}
- A long (~ 2m) vertical trap
- Anti-H production region

Production, trapping, \& cooling
- Measurement region
- Sagging of anti-H "gas"
- Anti-atomic "fountain"
- Anti-atomic interferometry
- uW spectroscopy
- Major Canadian funding

\section*{Radial TPC Construction at TRIUMF}

GEANT simulation

2.3 m long, Radial thickness: 10 cm
\(\rightarrow\) Radial drift Time Projection Chamber
Excellent track recognition!
(~90\% reconstruction efficiency)

\section*{ALPHA-g Trap Design: C. So}


\section*{24 superconducting magnets!}

\section*{®triumf}

\section*{ALPHA-g design \& simulations}


Aiming for measurement in 2018!

\section*{ALPHA Future Prospects}

\section*{Retriump}

\section*{Challenge}
"we congratulate NSERC for bravely recognizing the best and most basic research, and we applaud our prizewinners for adding an important milestone to the history of science." --- Message from Dr. John Polanyi to the ALPHA-Canada team


\section*{ALPHA CPT Road Map}

- Charge
- Lamb shift
- 2s-4s
- Anti-H+ ion
- Molecule
- BEC?

\section*{忍triumf}

\section*{Future?}


\section*{Retriumf}

\section*{Future: Anti-atomic fountain \& interforometry}


\[
\Delta \varphi=\left(k_{\text {eff }} \cdot g\right) T^{2}
\]

Summary
- Anti-H addresses fundamental questions
- 18 years since the start of Antiproton Decelerator at CERN, we entered the precision physics era
- Laser spectroscopy at 10-10 level
- Microwave, charge neutrality at 10-9 etc.
- Developing gravity measurement: ALPHA-g
- ELENA, upgrade to AD, under construction
- Exciting future ahead for 2020-25 and beyond!
- Excellent students \(\rightarrow\) photos

\section*{民rıuиш Our Hard-working Students Recognized}


\section*{CBCnews |Technology \& Science}

Wath - trate.

Hydomako Thesis (Calgary) published as book: Springer "Best of Best" Thesis Series (20 downloads, since Jan.)


\section*{CERN Homepage \\ "Andrea Gutierrez, Ph.D. student from UBC"}

ALPHA experiment traps antimatter atoms for 1000 seconds



CERN staff and
journalists
Journaists
Kids
Our neighbours
informatio CERN in a nutshell
Science at CERN


\section*{Antimatter atoms held captive by physicists}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{For the first time, scientists have been able to capture antimatter atoms and Canad had a role} & \multirow[b]{2}{*}{For the first time, an caged and kept in e probed by scientific} & Ne & Spor & Musi & Radio & v My & on \({ }^{\text {- }}\) & re \({ }^{\prime}\) \\
\hline & & \multicolumn{7}{|l|}{CBCnewS |Technology \& Science} \\
\hline & ry excited & Home & World & Canada & Poilitics & Business & Health & Ats \\
\hline antimatter? 4:05 & & \multicolumn{7}{|l|}{Technology \& Science Quirks \& Quarks Blog Photo Galleries} \\
\hline
\end{tabular}

Antimatter atoms trapped for




Antimatter atom 'measured' for first tir So far, antihydrogen appears very similar to hydrogen
```

