Muon g-2/EDM at J-PARC

Glen Marshall TRIUMF

TRIUMF Science Week Particle Physics, Nuclear Physics, and Beyond July 13 2017

With thanks for their support to:

- Natural Sciences and Engineering Research Council, Canada
- TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics

Outline

- What g-2/EDM measures
- Current status of Standard Model theory and measurement
- J-PARC g-2/EDM compared with BNL and Fermilab experiments
- Components of J-PARC g-2/EDM
 - muon source and TRIUMF S1249
 - muon acceleration
 - decay detection and frequency measurement

The muon's magnetic dipole moment

The magnetic dipole moment μ of a particle is determined by its mass m, charge q, spin S and g-factor:

$$ec{\mu} = g\left(rac{q}{2m}
ight)ec{S}$$

The spin precession in a magnetic field is:

$$ec{\omega}_s = \left(-rac{g}{2} - rac{(1-\gamma)}{\gamma}
ight) rac{qec{B}}{m}$$

• The cyclotron frequency of rotation is: $\vec{\omega}_c = \left(-\frac{1}{\gamma}\right) \frac{q\vec{B}}{m}$

• Spin ½ fermions: for a Dirac particle
$$g \equiv 2$$
, but corrections add an anomaly *a*:
 $\mu = (1 + a) \left(\frac{q\hbar}{2m}\right), \quad a \equiv \frac{g-2}{2}$

For a **muon** with velocity β perpendicular to a magnetic field *B*, with an electric field *E*, there will be cyclotron motion at frequency ω_c while the spin will rotate at frequency ω_s , with difference ω_a :

$$ec{\omega}_a = ec{\omega}_s - ec{\omega}_c = -rac{q}{m_\mu} \left[a_\mu ec{B} - \left(a_\mu - rac{1}{\gamma^2 - 1}
ight) rac{ec{eta} imes ec{E}}{c}
ight]$$

The muon's electric dipole moment

The electric dipole moment d of is defined similarly in terms of the particle's mass, charge, and spin S, with proportionality η

$$ec{d}=\eta\left(rac{q}{2m}
ight)ec{S}$$

 The fermion's SM EDM is zero except for possible CP or T violation at higher orders (4 loops)

$$d_{\mu}^{SM}\sim 2 imes 10^{-38}\,e\cdot{
m cm}$$

In a non-zero electric field, the anomalous muon frequency is modified with a non-zero EDM at frequency ω_n :

$$ec{\omega}_a + ec{\omega}_\eta = -rac{q}{m_\mu} \left[a_\mu ec{B} - \left(a_\mu - rac{1}{\gamma^2 - 1}
ight) rac{ec{eta} imes ec{E}}{c} + rac{\eta_\mu}{2} \left(ec{eta} imes ec{B} + rac{ec{E}}{c}
ight)
ight]$$

 ω

 ω

SM calculations of muon g-2

BNL E821 and comparison with SM

$$egin{aligned} a^{ ext{E821}}_{\mu} &= 116\;592\;091(54)(33) imes10^{-11}\ a^{ ext{SM}}_{\mu} &= 116\;591\;803(1)(42)(26) imes10^{-11}\ \Delta a_{\mu} &= a^{ ext{exp}}_{\mu} - a^{ ext{SM}}_{\mu} = 288(63)(49) imes10^{-11} \end{aligned}$$

• a_{μ} differs from SM predictions by >3 σ

F. Jegerlehner and A. Nyffeler (JN), Phys. Reports 477, 1 (2009)
M. Davier et al. (DHMZ), Eur. Phys. J. C 71, 1515 (2011)
K. Hagiwara et al. (HLMNT), J. Phys. G 38, 085003 (2011)

G.W. Bennett and 75 others (E821), Phys. Rev. D 73, 072003 (2006)

Results KNT17 update				
KNT17 a_{μ}^{SM} ι	ıpdate			
	<u>2011</u>		2017	*to be discussed
QED	11658471.81 (0.02)	\longrightarrow	11658471.90 <mark>(0.01</mark>) [Phys. Rev. Lett. 109 (2012) 111808]
EW	15.40 (0.20)	\longrightarrow	15.36 <mark>(0.10</mark>) [Phys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]*
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]*
	HLMNT11		KNT1	7
LO HVP	694.91 (4.27)	\longrightarrow	692.23 <mark>(2.5</mark> 4) this work*
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.83 (0.04	 this work*
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (2014) 144] *
Theory total	11659182.80 (4.94)	\longrightarrow	11659181.00 <mark>(3.6</mark> 2	2) this work
Experiment			11659209.10 <mark>(6.3</mark> 3	<mark>3)</mark> world avg
Exp - Theory	26.1 (8.0)	\longrightarrow	28.1 (7.3	3) this work
Δa_{μ}	3.3σ	\rightarrow	3.9	σ this work
Alex Keshavarzi (Uol) KNT17	. _a had, VP	update	3 rd June 2017 22 / 23

revised SM predictions increase the difference to ~3.9σ

► Keshavari et al. (KNT17)

Fermilab g-2 (E989) begins

First observation of ω_a oscillations from Fermilab g-2

First result at BNL statistics expected Spring 2018

g-2 Magnet in Cross Section

13

Compare: Fermilab and J-PARC

Fermilab

$$-rac{q}{m_{\mu}}\left[a_{\mu}ec{B}-\left(a_{\mu}ec{ec{ec{eta}}}_{1}
ight)rac{ec{eta} imesec{E}}{c}
ight]$$

- liminate effect of *E*-field via "magic" momentum:
 - ► $\gamma^2 = 1 + a^{-1}$
 - $p_{\mu} = 3.09 \text{ GeV/c required}$
- very uniform *B*
- electric quadrupole field focusing
- ▶ *B* = 1.45 T
- *ρ* = 7 m
- periodic calorimeters with some tracker modules

Improves on the BNL method

J-PARC

- eliminate effect of *E*-field via *E* = 0
- very uniform B in compact region
- weak *B* field focusing, no *E* focusing must use low-emittance "cold" μ beam
 - polarization reduced to 50%
 - ► allows spin flipping
- choose $p_{\mu} = 0.3 \text{ GeV/c}$
- ▶ *B* = 3 T
- ρ = 0.33 m
- uniform tracker detection along stored orbit (EDM sensitivity)

A new method with quite different systematics

Surface muons to "cold" muons

► Thermalization of ~10⁸ s⁻¹ surface muons

	Surface beam	Thermal beam
E _k , MeV	3.4	0.03×10 ⁻⁶
p, MeV/c	27	2.3× 10 ⁻³
Δ p/p, rms	0.05	0.4
⊿p, MeV/c	1.3	1×10 ⁻³

- Thermal diffusion of Mu (μ^+e^-) into vacuum
 - ▶ decay length ~14 mm
 - TRIUMF experiment S1249
- Ionization
 - ► $1S \rightarrow 2P \rightarrow unbound (122 nm, 355 nm)$
- Acceleration
 - ► *E* field, RFQ, linear structures
 - adds to p_z but not significantly to Δp

Mu from laser-ablated aerogel (S1249)

distance from emitting surface (mm)

- Used a model-independent approach to estimate yields
- For 0.3 mm structure, observed 10 times yield previously reported from 2011 data.

G.A. Beer et al., Prog. Theor. Exp. Phys. 2014, 091C01 (2014).

Table 1 Yield of Mu in the vacuum region 1–3. For all laser processed samples, the diameter of the structure is 270 $\mu m.$

Sample	Laser-ablated structure	Vacuum yield
	(pitch)	$(per \ 10^3 muon stops)$
Flat	none	3.72 ± 0.11
Flat (Ref. $[7]$)	none	2.74 ± 0.11
Laser ablated	$500 \ \mu m$	16.0 ± 0.2
Laser ablated	$400~\mu{\rm m}$	20.9 ± 0.7
Laser ablated	$300 \ \mu m$	30.5 ± 0.3

S1249 preliminary results (July 2017)

- Confirmation of muonium polarization in vacuum (oscillations)*
- Confirmation of longer term (~days) stability of targets and Mu emission*
- Study of different ablation patterns and scales
 - ► hole diameter, pitch, depth
 - ► channel/groove structure
 - totally ablated surface
- Test of new aerogel material (PMSQ, with methyl additions)
- (* resolution of issues identified in recent Focused Review)

Photo and ablations by S. Kamal, UBC

Laser ionization of Mu

Two steps

- Lyman α 1S \rightarrow 2P at 122 nm
- ▶ 2P→unbound at 355 nm

• Lyman α

- ▶ two-photon resonance four-wave mixing in Kr
- ▶ pump with 212.55 nm
- ▶ generate 122 nm via difference mixing with 820 nm
- goal is 100 μ J in 2 ns pulse with 80 GHz width at 25 Hz

122 nm, μJ

		20	40	60	80	100	120
	50	0.097	0.151	0187	0.210	0.226	0.238
	100	0.171	0.268	0.327	0.366	0.393	0.412
Е	150	0.228	0.356	0.433	0.482	0.516	0.540
Ê	200	0.273	0.424	0.514	0.570	0.608	0.635
	250	0.310	0.479	0.577	0.639	0.679	0.708
32	300	0.339	0.521	0.627	0.691	0.733	0.762
	350	0.363	0.556	0.666	0.733	0.775	0.804
	400	0.383	0.585	0.698	0.766	0.809	0.857

Calculated ionization efficiencies (2 cm² area)

 $\omega_{Ly-\alpha}$

ω₁ 212.55 nm

Kr 4p⁶

121.5~122.2 nm

100 μJ @122 nm

Lyman α

13

Acceleration of thermal muons

Graphics from K. Hasegawa, KEK

- Requirements
 - fast acceleration to reduce decay losses

 \blacktriangleright (τ_{μ} = 2.2 μ s at rest)

 control/reduce emittance growth to enable injection and capture by storage ring

Injection and storage of muons

Superconducting solenoid

- cylindrical iron poles and yoke
- vertical B = 3 Tesla, <1ppm locally</p>
- storage region r = 33.3±1.5 cm, h = ±5 cm
- tracking detector vanes inside storage region
- storage maintained by static weak focusing
 - > n = 1.5 × 10⁻⁴, $rB_r(z) = -n zB_z(r)$ in storage region

Spiral injection

- transfer line from end of linac with downward deflection
- hole in upper yoke for beam entrance
 - permits entry, shields beam from field
- ▶ pulsed radial field on injection
 - reduces vertical momentum to match a trapped orbit

Decay positron tracking detector

- Detect e^+ at higher range of energies (200–290 MeV/c)
 - typically one turn of track hits
- Core of lead-tungsten to absorb multiple turns

Item	Specifications
Fiducial volume	240mm (radial) x 400 mm (axial)
Number of vane	48
Sensor technology	Single-sided Silicon strip sensor (p-on-n)
Strip	axial-strip : 100mm pitch, 72mm long , 1024 ch radial-strip: 188mm pitch, 98mm long, 384 ch
Sensor dimension	74 mm x 98 mm x 0.32mm
Number of sensor	1152 (12 sensors per vane)
Number of channel	811,008ch
Time measurement	Period : 33ms, Sampling time : 5ns

(top view)

Status of J-PARC g-2/EDM

- January 2012 Stage 1 approval recommended by PAC, granted by IPNS Director
- May 2105 Technical Design Report submitted to PAC
- October 2016 revised TDR submitted
- November 2016 Focused Review on technical design
- Review recommendations:
 - Develop a "fast track" plan to achieve the Phase-1 result in a timely and costeffective manner
 - ➤ ~0.5 ppm, equivalent to BNL
 - ➤ Phase-2 goal is ~0.1 ppm
 - This committee finds that Phase-1 of the E34 experiment is technically ready for Stage-2 approval.
 - subject to resolution of the remaining technical issues...

Summary

- J-PARC muon g-2/EDM can confirm the muon g-2 result at the precision of the BNL experiment (Phase 1) and possibly the Fermilab experiment (Phase 2)
 - systematic limitations are expected to be quite different
- The resource-limited schedule requires four years prior to data taking
 - unlike the Fermilab group who has done the experiment before, we would have to learn the limitations and how to control systematics
 - currently considering fast-track plan to first results
- The collaboration has over 90 registered members, with opportunities for participation in the many technologies required to make the experiment a success
 - for more information, see <u>http://g-2.kek.jp</u>

Thank you Merci

Recipe for precision

▶ *B* measured with an array of NMR magnetometers

- calibrated with respect to an absolute spherical water sample probe measuring ω_n
- same calibration probe used in Los Alamos muonium microwave experiment measuring $\lambda = \omega_L / \omega_p$, the muon to proton magnetic moment ratio, from muonium HFS

$$\omega_L = -g_\mu \frac{qB}{2m_\mu}$$
 (non-relativistic ω_s)
 $\lambda = \omega_L/\omega_p = 3.183345107(84)$ (0.026 ppm, 2010 CODATA)

- other probes periodically moved by trolley through the vacuum system to map the muon beam field environment, to measure a spatial average ω_p^{avg}
- Dividing ω_a by ω_p^{avg} produces a_μ in terms of *ratios* of frequencies

$$a_{\mu} = rac{\omega_a}{\omega_L - \omega_a} = rac{(\omega_a / \omega_p^{ ext{avg}})}{\lambda - (\omega_a / \omega_p^{ ext{avg}})}$$

• Using ω_L from an independent experiment, a_μ depends on two frequencies, ω_a from muon decay time spectrum and ω_p from magnetic field measurements.

Muons produced to muons stored

Quantity	Reference	Efficiency	Cumulative	Intensity (Hz)
Muon intensity at production target	[2]			1.99E + 09
H-line transmission	[2]	1.62E-01	1.62E-01	3.22E + 08
Mu emission	[3]	3.82E-03	6.17E-04	1.23E + 06
Laser ionization	[4]	7.30E-01	4.50E-04	8.97E + 05
Metal mesh	[5]	7.76E-01	3.49E-04	6.96E + 05
Init.Acc.trans.+decay	[5]	7.18E-01	2.51E-04	5.00E + 05
RFQ transmission	[6]	9.45 E-01	2.37E-04	4.72E + 05
RFQ decay	[6]	8.13E-01	1.93E-04	3.84E + 05
IH transmission	design goal	$1.00E{+}00$	1.93E-04	3.84E + 05
IH decay	[7]	9.84 E-01	1.90E-04	3.78E + 05
DAW transmission	design goal	$1.00E{+}00$	1.90E-04	3.78E + 05
DAW decay	[8]	9.94 E-01	1.88E-04	3.76E + 05
High beta transmission	design goal	9.80E-01	1.85E-04	3.68E + 05
High beta decay	[9]	9.88E-01	1.83E-04	3.64E + 05
Injection transmission	design goal	1.00E + 00	1.83E-04	3.64E + 05
Injection decay	[10]	9.90E-01	1.81E-04	3.60E + 05
Detector start time	[10]	9.27 E-01	1.67E-04	3.34E + 05
Muon at storage				3.34E + 05

Table 13.1: Efficiency and beam intensity

J-PARC g-2 error goals (work in progress)

Statistical uncertainties

- Statistical uncertainty estimates
 - $\Delta \omega_a / \omega_a = 0.35 \text{ ppm} (0.163 / \text{PN}^{1/2})$
 - > BNL E821 σ_{stat} = 0.46 ppm
 - $\Delta d_{\mu} = 1.2 \times 10^{-21} e \cdot cm$ sensitivity
 - ► BNL E821 (-0.1 \pm 0.9)×10⁻¹⁹ $e \cdot$ cm
 - ► $d_e < 0.87 \times 10^{-28} e \cdot cm$
- Running time
 - measurement only: 2×10⁷ s
- Muon rate from H-line
 - IMW, SiC target: 3.32×10⁸ s⁻¹
- Conversion efficiency to ultra-slow muons
 - Mu emission (S1249), laser ionization
 - ► 2.25×10⁻³ (stage 2 goal is 0.01)
- Acceleration efficiency including decay
 - RFQ, IH, DAW, and high- β : 0.52
- Storage ring injection, decay, and kick
 - ▶ 0.92
- Stored muons
 - ► 3.58×10⁵ s⁻¹

Systematics

- Estimations still in progress
 - simulations
 - need experience with prototypes and first stages
 - need running experience to make assessments like E989
- ω_p (B measurement)
 - + smaller stored volume, higher local precision that E821
- ω_a (decay time measurement)
 - + all tracking detectors
 - high rate differences between early and late decay times
 - + polarization flip eliminates lowest-order rate dependences

Fermilab E989 and J-PARC E34

Table 4: Comparison of various	parameters for the Fermilab a	and J-PARC $(g-2)$ Experiments
--------------------------------	-------------------------------	--------------------------------

Parameter	Fermilab E989	J-PARC E24
Statistical goal	$100\mathrm{ppb}$	$400\mathrm{ppb}$
Magnetic field	$1.45\mathrm{T}$	$3.0\mathrm{T}$
Radius	$711\mathrm{cm}$	$33.3\mathrm{cm}$
Cyclotron period	$149.1\mathrm{ns}$	$7.4\mathrm{ns}$
Precession frequency, ω_a	$1.43\mathrm{MHz}$	$2.96\mathrm{MHz}$
Lifetime, $\gamma \tau_{\mu}$	$64.4\mu{ m s}$	$6.6\mu{ m s}$
Typical asymmetry, A	0.4	0.4
Beam polarization	0.97	0.50
Events in final fit	$1.5 imes 10^{11}$	$8.1 imes 10^{11}$

Gorringe and Hertzog, Prog. Part. Nucl. Phys. 84, 73 (2015) (arXiv:1506.01465)