
High-Luminosity Energy-Frontier Physics with ATLAS at the Large Hadron Collider

P. Krieger, University of Toronto (on behalf of the ATLAS Canada Collaboration)

Particle Physics, Nuclear Physics and Beyond, July 13, 2017 TRIUMF Science Week

ATLAS Canada Collaboration

Founded in 1992: Spokespersons: M. Lefebvre, UVic R.S. Orr U of T 1994–2007 R. McPherson, IPP/UVic 2007-2015

Alberta Carleton McGill Montréal SFU Toronto TRIUMF UBC Victoria York

Current Management

Spokesperson, PI (2015 –):	P. Krieger, U of T
Deputy:	A. Warburton, McGill
Physics Coord:	A. Lister, UBC
Computing Coord:	D. Gingrich, Alberta

39 University/Lab faculty (~35 FTE) 28 Postdocs, 77 GS (Fall 2016), ≈ 25 UG students/year Plus engineers and technicians (some MRS funded) Group includes 5 IPP Research Scientists (4 FTE)

P.Krieger, U of T

Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017

ATLAS Canada Collaboration

Founded in 1992: Spokespersons: M. Lefebvre, UVic R.S. Orr U of T 1994–2007 R. McPherson, IPP/UVic 2007-2015

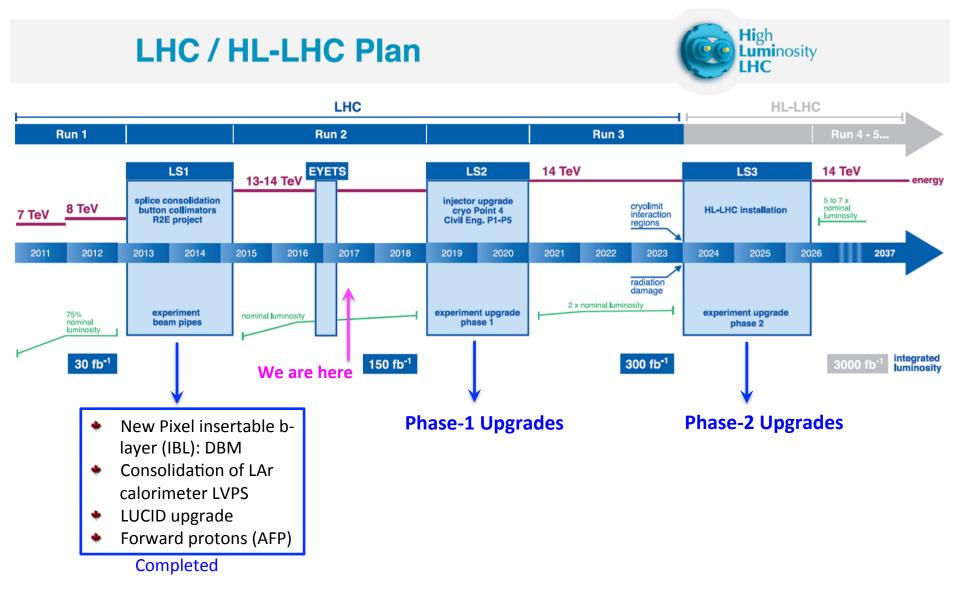
Alberta Carleton McGill Montréal SFU Toronto **TRIUMF** UBC Victoria York

Current Management

Spoke	esperson, PI (2015 –):	P. Krieger, U of T			
Depu	ty:	A. Warburton, McGill			
Physi	cs Coord:	A. Lister, UBC			
Com	Faculty complement includes 4 TRIUMF				
	Roard Appointed Emp				

Board Appointed Employees (BAE) as well 39 Ur as 5 TRIUMF RS or TRIUMF/University

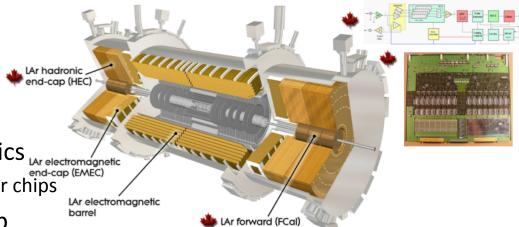
28 Pc joint positions at five institutions.


Plus engineers and technicians (some MRS funded) Group includes 5 IPP Research Scientists (4 FTE)

year

The Large Hadron Collider at CERN

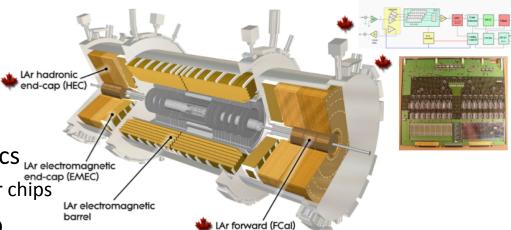
- The world's highest-energy particle collider
 - Likely to remain at the energy-frontier for at least another two decades
- ATLAS: over 645 peer-reviewed papers (published or submitted)
- Higgs Boson discovery in 2012 led to 2013 Nobel Prize to Higgs and Englert (with ATLAS and CMS mentioned in the citation)
 - Investigations of Higgs properties still important and on-going
 - This will remain true to the end of the LHC/HL-LHC experimental program
- Increased energy, decreased bunch spacing for Run-2 (2015-2018):
 - Bunch spacing of 25 ns (instead of 50 ns) for reduced pileup
 - 13 TeV up from 8 TeV in Run-1: new window for searches for BSM physics
 - LHC magnet training to 14 TeV investigated during 2016-17 EYETS
 - Energy will remain at 13 TeV for all of Run-2. Run 3 will be at 14 TeV.
- Maximum LHC energy is 14 TeV. After that, planned improvements associated with an increase of the collision rate (luminosity):
 - The is the goal of both the Phase-I and Phase-II LHC / ATLAS Upgrades


LHC/HL-LHC Schedule / ATLAS upgrade planning

Canadian Hardware Contributions to ATLAS

Main contributions to the original detector

- Hadronic Endcap calorimeter
 - Two of four wheels
- Hadronic Forward calorimeter
 - All four modules
- Liquid argon front-end electronics
 LAT electromagnetic end-cap (EMEC)
 - Switched capacitor array controller chips
- Liquid argon calorimeter endcap signal feedthroughs

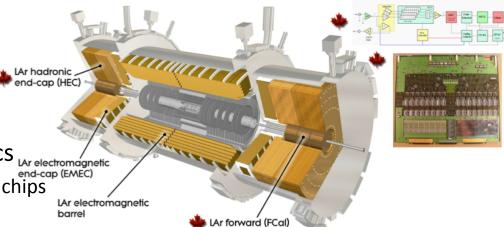

Canadian Hardware Contributions to ATLAS

Main contributions to the original detector

- Hadronic Endcap calorimeter
 - Two of four wheels
- Hadronic Forward calorimeter
 - All four modules
- Liquid argon front-end electronics
 LAr electromagnetic
 end-cap (EMEC)
 - Switched capacitor array controller chips
- Liquid argon calorimeter endcap signal feedthroughs

Other contributions to the existing detector

- Diamond Beam Conditions Monitor (also used for luminosity)
- High-level trigger (HLT) processors
- MediPix / TimePix for cavern background monitoring, luminosity
- LUCID luminosity monitor and upgrade in LS1 (2013-2015)
- Diamond Beam Monitor (telescope) installed in LS1 (2013-2015)
- Inner Detector readout
- ATLAS Forward Protons (AFP) installation completed in 2016/17 shutdown


Canadian Hardware Contributions to ATLAS

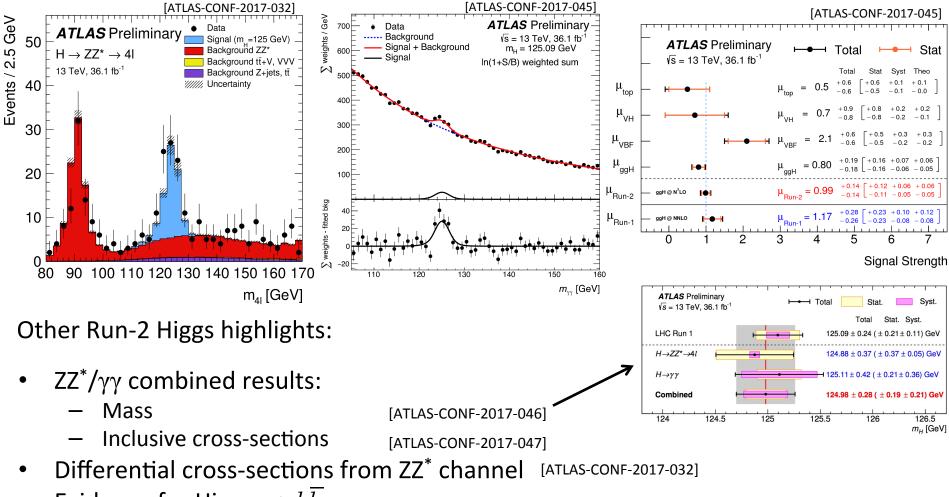
Main contributions to the original detector

- Hadronic Endcap calorimeter
 - Two of four wheels
- Hadronic Forward calorimeter
 - All four modules
- Liquid argon front-end electronics
 LAr electromagnetic
 end-cap (EMEC)
 - Switched capacitor array controller chips
- Liquid argon calorimeter endcap signal feedthroughs

Other contributions to the existing detector

- Diamond Beam Conditions Monitor (also used for luminosity)
- High-level trigger (HLT) processors
- MediPix / TimePix for cavern background monitoring, luminosity
- LUCID luminosity monitor and upgrade in LS1 (2013-2015)
- Diamond Beam Monitor (telescope) installed in LS1 (2013-2015)
- Inner Detector readout
- ATLAS Forward Protons (AFP) installation completed in 2016/17 shutdown

Calorimeter modules and signal feedthroughs will all stay for the HL-LHC


ATLAS Canada Computing

• Canada also contributes significantly to ATLAS Computing:

- CFI-funded Tier-1 facility at TRIUMF
 - Being relocated to SFU in 2017-18 (new hardware)
- Tier-2 facilities through Compute Canada (CC)
 - These are also evolving as a result of CC site consolidation
- WLCG MoU commits Canada to providing ATLAS computing resources:
 - This presumably goes to the end of the nominal LHC experimental program
 - We will be expected to contribute to ATLAS computing in the HL-LHC era
 - The model for this is not yet well understood
 - Community Whitepaper to be delivered in summer 2017:
 - will be used as input to the writing of an HL-LHC computing TDR in 2020
- TRIUMF remains responsible for Tier-1 operations costs until end of current 5YP in 2020:
 - Also after that, for salaries, at least for Tier-1 specific tasks
- Canada also a big player in Cloud Computing (not only for ATLAS)
 - Could possibly play a more significant role in a future computing model

Run-2 Higgs Boson Results

Higgs properties measurements in ZZ^{*} and diphoton final states

Evidence for Higgs $\rightarrow bb$ [Atlas-conf-2017-041]

ATLAS SUSY Searches Summary (May 2017)

ATLAS SUSY Searches* - 95% CL Lower Limits

	lav 2017		- 93 /						$\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s}=7,8$	B TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \mathcal{K}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \mathcal{K}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \mathcal{K}_{1}^{0} \\ \tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$		-	20.3 36.1 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{608}\$ GeV \$\bar{g}\$ \$\bar{b}\$	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$m(\tilde{x}_{1}^{0})$ <400 GeV $m(\tilde{x}_{1}^{0})$ <400 GeV	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\lambda}_{1}^{1} \end{array}$	0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ž ž ž	1.92 TeV 1.97 TeV 1.37 TeV	$m(\tilde{\chi}_{1}^{0})$ <600 GeV $m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{\chi}_{1}^{0})$ <300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{k}_1^{0} \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{k}_1^{0} \\ \bar{t}_1 \bar{b}_1, \bar{b}_1 \to b \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to c \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to c \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1 (\operatorname{natural (MSB)} \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + h \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0-2\ e,\mu\\ 0-2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1-2\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b		36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV r1 117-170 GeV 200-720 GeV r1 90-198 GeV 205-950 GeV r1 90-323 GeV 205-950 GeV r1 90-323 GeV 205-950 GeV r2 150-600 GeV 200-720 GeV r2 290-790 GeV 200-790 GeV		$\begin{array}{l} m(\tilde{x}_{1}^{0})\!$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 14003.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\gamma}(\ell r) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{2}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\gamma}(\ell r) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{\gamma}(\ell r) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*}\ell \tilde{\chi}_{1}^{0} \end{pmatrix} (\tilde{\nu}\tilde{\nu}_{L}, \tilde{\nu}\tilde{\nu}_{L}(\ell r) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*}0 \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*}0 \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*}0 \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{2}^{*}0 \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}, \tilde{\chi}_{2,3} \rightarrow \tilde{\ell}_{R}\ell \\ GGM (wino NLSP) weak prod., \tilde{\chi}_{1}^{0} \\ GGM (bino NLSP) weak prod., \tilde{\chi}_{1}^{0} \end{split}$	$4 e, \mu$ $\rightarrow \gamma \tilde{G} = 1 e, \mu + \gamma$	0 0 0-2 jets 0-2 b 0 - -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3			$\begin{split} & m(\tilde{k}^{2}_{1}^{0}){=}0 \\ & m(\tilde{k}^{2}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\ell}^{2}_{1}^{+}){+}m(\tilde{k}^{2}_{1}^{0})) \\ & m(\tilde{k}^{2}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{k}^{2}_{1}^{+}){+}m(\tilde{k}^{2}_{1}^{0})) \\ & m(\tilde{k}^{2}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{k}^{2}_{1}^{+}){+}m(\tilde{k}^{2}_{1}^{0})) \\ & m(\tilde{k}^{2}_{1}^{-}){=}m(\tilde{k}^{2}_{2}^{0}), m(\tilde{k}^{0}^{1}){=}0, \tilde{\ell} \text{decoupled} \\ & m(\tilde{k}^{2}_{1}^{0}){=}m(\tilde{k}^{2}^{0}){=}0, m(\tilde{k}^{0}){=}0.5(m(\tilde{k}^{0}_{2}^{0}){+}m(\tilde{k}^{0}_{1}^{0})) \\ & cr<1 nm \\ & cr<1 nm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.077110 1405.5086 1507.05493 1507.05493
Long-lived particles	$ \begin{array}{l} \text{Direct} \ \tilde{X}_1^{\dagger} \tilde{X}_1^{-} \ \text{prod., long-lived} \ \tilde{X}_1^{\pm} \\ \text{Direct} \ \tilde{X}_1^{\dagger} \tilde{X}_1^{-} \ \text{prod., long-lived} \ \tilde{X}_1^{\pm} \\ \text{Stable, stopped} \ \tilde{g} \ \text{R-hadron} \\ \text{Stable} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{GMSB, stable} \ \tilde{\tau}, \tilde{X}_1^{0} \rightarrow \tau \tilde{c}, \ \text{ing-lived} \ \tilde{X}_1^{0} \\ \tilde{g} \ \tilde{g}, \ \tilde{X}_1^{0} \rightarrow \tau \tilde{c}, \ \text{long-lived} \ \tilde{X}_1^{0} \\ \text{GMSB}, \ \tilde{g} \ \tilde{\chi}_1^{0} \rightarrow \tau \tilde{G} \\ \text{GM} \ \tilde{g} \ \tilde{g}, \ \tilde{\chi}_1^{0} \rightarrow \tau \tilde{G} \\ \end{array} $	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + jet		Yes Yes - - Yes - -	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X [±] 430 GeV X [±] 495 GeV \$\$ 850 GeV \$\$ 9 \$\$ 9 \$\$ 9 \$\$ 1.0 TeV \$\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{k}_1^+)-m(\tilde{k}_1^0)\sim 160 \; MeV, \; \tau(\tilde{k}_1^+)=0.2 \; \mathrm{ns} \\ & m(\tilde{k}_1^+)-m(\tilde{k}_1^0)\sim 160 \; MeV, \; \tau(\tilde{k}_1^+)<15 \; \mathrm{ns} \\ & m(\tilde{k}_1^0)=100 \; GeV, \; 10 \; \mus < \tau(\tilde{\varrho})<1000 \; s \\ & m(\tilde{k}_1^0)=100 \; GeV, \; r>10 \; ns \\ & 10 stan\beta < 50 \\ & 1 < \tau(\tilde{k}_1^0)<3 \; ns, \; SPS8 \; model \\ & 7 < \tau(\tilde{k}_1^0)<740 \; nm, \; m(\tilde{\varrho})=1.3 \; TeV \\ & 6 < cr(\tilde{k}_1^0)<480 \; nm, m(\tilde{\varrho})=1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^* \tilde{x}_1^* \rightarrow W \tilde{x}_1^0 X_1^0 \rightarrow eev, e\mu v, \mu\mu v \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0 X_1^0 \rightarrow rrv_e, e\tau v_\tau \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{f}_1 \tilde{t}_1 \rightarrow qq \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{f}_1 \tilde{t}_1 \rightarrow b \\ \tilde{f}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{f}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	04 1 <i>e</i> ,μ8 1 <i>e</i> ,μ8	- -5 large- <i>R</i> je -5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$ \begin{array}{c} \bar{v}_{\tau} \\ \bar{q}_{\tau} \bar{g} \\ \bar{\chi}_{1}^{2} \\$	•V 1.55 TeV	$\begin{array}{l} \lambda_{111}'=0.11, \lambda_{132/133/233}=0.07\\ m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \mbox{ mm}\\ m(\tilde{x}_1^0)>400 \mbox{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)\\ m(\tilde{x}_1^0)>0.2 \mbox{m}(\tilde{x}_1^1), \lambda_{133}\neq 0\\ BR(t)=BR(c)=BR(c)=0\%\\ m(\tilde{x}_1^0)=800 \mbox{ GeV}\\ m(\tilde{x}_1^0)=800 \mbox{ GeV}\\ m(\tilde{x}_1^0)=1 \ \mbox{TeV}, \lambda_{112}\neq 0\\ m(\tilde{t}_1)=1 \ \mbox{TeV}, \lambda_{323}\neq 0\\ BR(\tilde{t}_1\rightarrow be/\mu)>20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	2 510 GeV		m(𝒱̃1)<200 GeV	1501.01325
phén	a selection of the available ma nomena is shown. Many of the lified models, c.f. refs. for the	limits are ba	sed on	s or	1)-1	1	Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

P.Krieger, U of T

Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017

ATLAS Preliminary

ATLAS Exotics Searches Summary July 2017

Limit

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

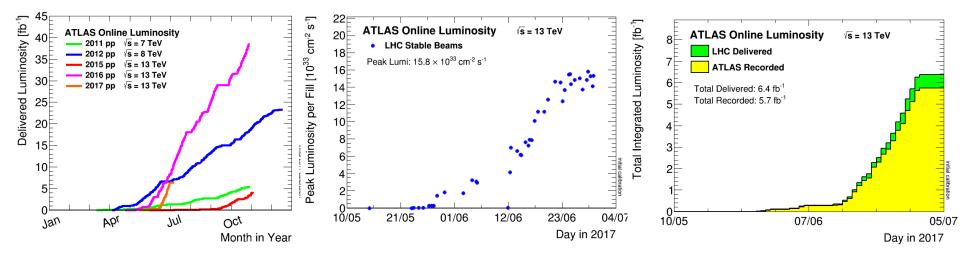
 ℓ, γ Jets $\dagger E_T^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$

Status: July 2017 Model

ATLAS Preliminary

J£ dt	<i>√s</i> = 8, 13 TeV	
-		Reference
7.75 Te\	n = 2	ATLAS-CONF-2017-060
8.6 T	eV n = 3 HLZ NLO	CERN-EP-2017-132
8.9 1	[eV n = 6	1703.09217
8.2 Te	$N = 6, M_D = 3$ TeV, rot B	H 1606.02265
9.55	TeV $n = 6, M_D = 3$ TeV, rot B	H 1512.02586
4.1 ToV	$k/\overline{M} = 0.1$	CEBN-EP-2017-132

Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH high } \sum_{PT} \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \gamma\gamma \\ \text{Bulk RS } G_{KK} \to WW \to qq\ell\nu \\ \text{2UED / RPP} \end{array}$	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $1J$ $\geq 2b, \geq 3j$	Yes - - - Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mp 7.75 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 1.75 TeV KK mass 1.6 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_P &= 1.0\\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; V' \to WV \to qqqq \; \mathrm{model} \\ \mathrm{HVT}\; V' \to WH/ZH \; \mathrm{model} \; \mathrm{B} \\ \mathrm{LRSM}\; W'_R \to tb \\ \mathrm{LRSM}\; W'_R \to tb \end{array}$	1 <i>e</i> , μ I B 0 <i>e</i> , μ multi-channel 1 <i>e</i> , μ	$\begin{array}{c} - & - & - \\ 2 & b \\ 1 & b, \geq 1 J/2 j \\ - & 2 & J \\ 2 & b, 0-1 & j \\ \geq 1 & b, 1 & J \end{array}$	– Yes Yes – Yes	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 2.0 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η_{LL}^- 40.1 TeV η_{LL}^- $ C_{RR} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
MQ	Axial-vector mediator (Dirac DM Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	0 e, μ, 1 γ	$\begin{array}{c} 1-4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	Immed 1.5 TeV Mmed 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<400~{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<480~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	1 e,μ ≥ 1 e,μ ≩ 2/≥3 e,μ	$\geq 1 \text{ b}, \geq 3 \text{ j}$ $1 \text{ b}, \geq 1 \text{J/2j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$	Yes Yes Yes –	13.2 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV T mass 1.16 TeV T mass 1.35 TeV B mass 700 GeV B mass 790 GeV B mass 1.25 TeV Q mass 690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV * mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ 2,3,4 e, μ (SS) 3 e, μ, τ 1 e, μ - - - - - - - - - - - - -	2 j - 1 b - - √s = 13 [•]	- - Yes - - TeV	20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$ \begin{array}{l} m(W_R) = 2.4 \ \text{TeV}, \text{ no mixing} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1 \\ a_{\text{non-res}} = 0.2 \\ \text{DY production}, q = 5e \\ \text{DY production}, g = 1g_D, \text{ spin } 1/2 \\ \textbf{Mass scale [TeV]} \end{array} $	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059


*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

P.Krieger, U of T

Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017

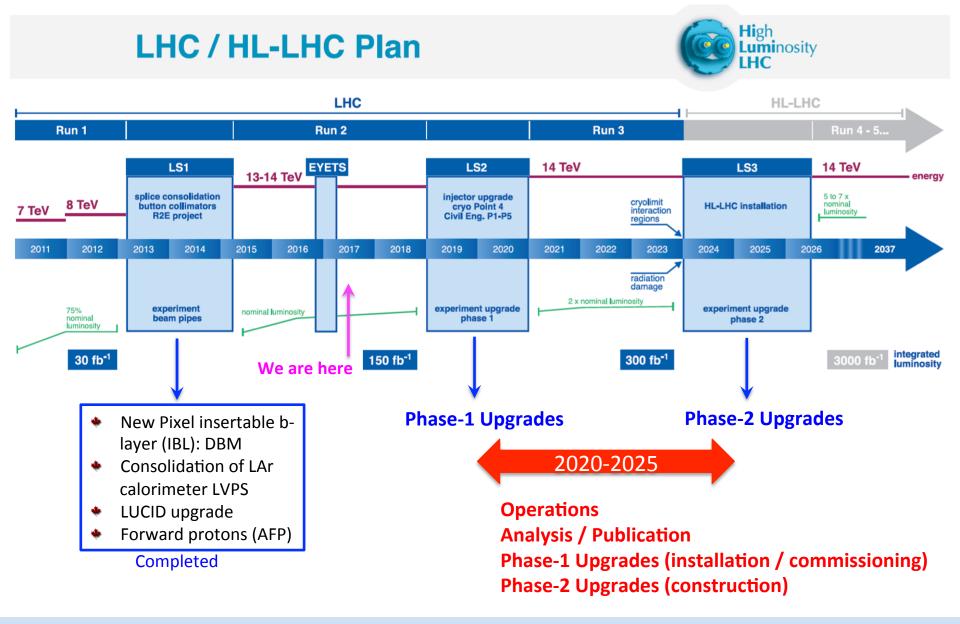
Current Status (2017 Running)

- First stable beams (3 x 3 bunches) declared May 23
- Steady luminosity ramp: slope currently exceeds that of 2016
 - Reached nominal number of bunches for 2017 running: 2556
 - Achieved new record instantaneous luminosity of 1.6 x 10³⁴ cm⁻²s⁻¹
 - Discussions in progress on increasing to 2.2 x 10³⁴ cm⁻²s⁻¹
 - Would require leveling or trigger adaptations at start of run
- Summary: the machine is performing excellently
- ATLAS performing very well: efficiency currently > 90% and increasing

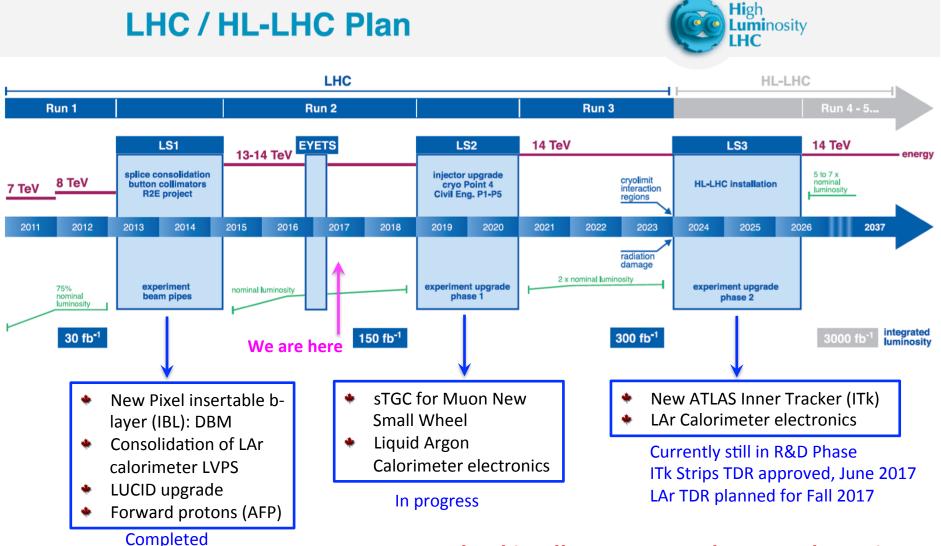
HEP Planning Exercises

- Canadian community recently went through NSERC-supported LRP exercise: report published in 2016
- Canadian Fundamental Science Review ("Naylor report") 2017:
 - Did not specifically address HEP, but supportive of international collaboration
 - Lobbying effort (for implementation of the recommendations) underway
- European Strategy for Particle Physics: next update is due in May 2020, so around the start of the next TRIUMF 5YP
 - CERN already organizing process for input:
 - Kickoff meeting for workshop on HL-LHC physics in Oct 30 Nov 1, 2017
 - Will include studies for the HE-LHC (28 TeV)
 - Process to culminate in CERN Yellow Report by end 2018; to be provided as input into European Strategy discussion.
- 2017 update of American (P5) priorities:
 - HL-LHC, LBNF, DUNE, + existing construction projects
- Longer-term international planning and investigations for:
 - Linear electron-positron colliders
 - Large circular colliders for electron-positron or hadron-hadron collisions (or both)
 - Physics program discussed in previous talk: more on this later on (but briefly)

NSERC Subatomic Physics Long Range Plan



A number of major international facilities and experiments that will further the understanding of the universe will become operational in the coming years. It is important for Canada to engage in such projects to maintain vitality in the field. Furthermore, <u>it is crucial to become active in early stages so that Canadians may</u> take on leadership roles and to ensure success of the projects.


SCIENTIFIC RECOMMENDATION:

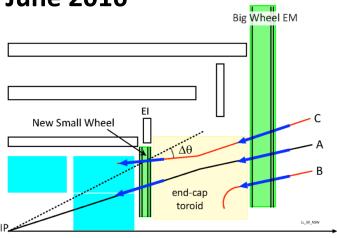
Position Canada for key leadership roles in strategic projects and initiatives by supporting activities in potential future flagship endeavours. Those projects with significant Canadian participation should continue to receive support: <u>ATLAS at the High-Luminosity LHC</u>, Belle II, Hyper-Kamiokande, ILD at ILC, MOLLER and SoLID at JLab, nEXO at SNOLAB, and UCN/nEDM at TRIUMF.

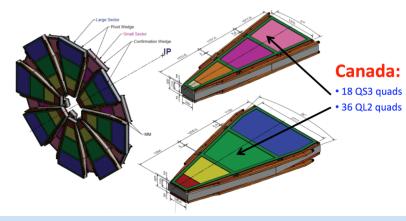
LHC/HL-LHC Schedule / ATLAS upgrade planning

LHC/HL-LHC Schedule / ATLAS upgrade planning

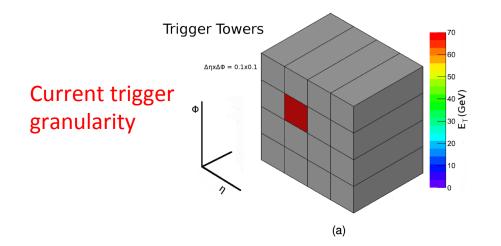
TRIUMF Involved in all ATLAS Canada upgrade projects

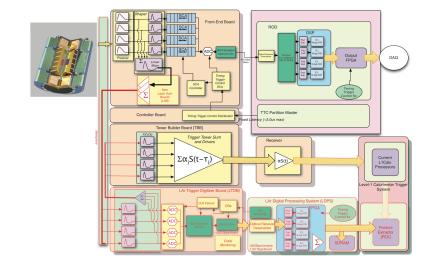
P.Krieger, U of T


Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017


Phase-1 Upgrades: Muon New Small Wheel

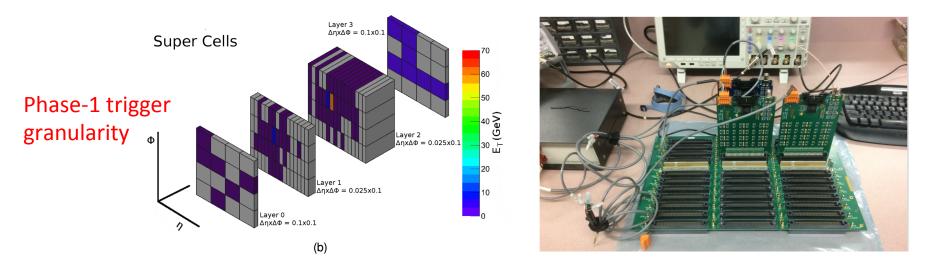
- NSW key component of ATLAS trigger strategy for Run-3 (fake rejection)
- sTGC construction/testing infrastructure at TRIUMF, Carleton and McGill
- Module-0 sTGC completed by Canadian group in May 2016
- Production Readiness Review (PRR) passed in June 2016
- Leading ***** coordination roles in NSW project:
 - Overall project management, schedule, finances
 - Cathode board procurement / preparation
 - Wedge assembly at CERN
 - Software / simulation
 - Electronics / software for cosmic-ray test station
 - Production test pulser board for sTGCs




P.Krieger, U of T

Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017

Phase-1 Upgrades: LAr Calorimeter Electronics

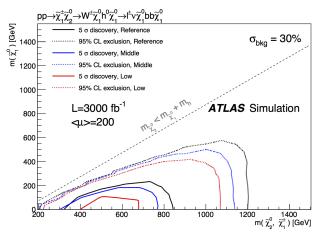

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background (fakes) suppression at trigger level

Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background (fakes) suppression at trigger level

- Implementation requires new Front-End Crate baseplanes
 - Canada: design, production & testing of new HEC baseplanes
- Design, prototyping and assembly at TRIUMF
- Acceptance testing at the University of Victoria

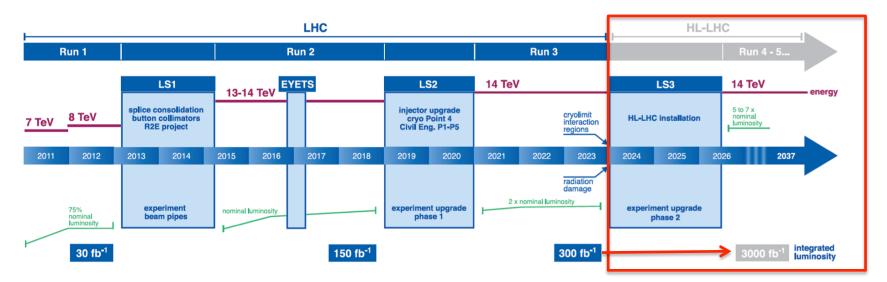
ATLAS at the High Luminosity LHC


- Proposed instantaneous luminosity of 7.5 × 10³⁴ cm⁻²s⁻¹ (μ≈200)
 - Needed for the targeted (×10) increase in integrated luminosity (3000 fb⁻¹)
 - Rate and accumulated dose causes problems for some detector subsystems
 - Need for pileup suppression becomes crucial issue for detector upgrades
- Proposed L0/L1 trigger scheme with rates of 1MHz/400KHz is incompatible with both tracker and calorimeter readout electronics:
 - Calorimeters modules can operate but:
 - Forward calorimeter response will be somewhat degraded at high $|\eta|$
 - Calorimeter front- and back-end electronics must be entirely replaced
- Radiation dose and occupancy also an issue for the tracker
 - This will be entirely replaced by a new all-silicon tracker, the ITk
 - Pixels at low radius, strips at higher radius.
 - Coverage out to $|\eta| = 4.0$ (from 2.5 for current inner tracker)
 - 160 m² of silicon. Almost half the cost / effort of Phase-II upgrades
- Phase-2 upgrades to Muon system also planned
- Forward Si timing detector also being considered

Phase-II Upgrades: Physics Motivations

- Primary goals: discovery of BSM and more detailed studies of the Higgs boson
- Higgs studies, in particular couplings:
 - Improvements over results with 300 fb⁻¹
 - Access to second-generation fermion couplings via $H \rightarrow \mu\mu$
 - Investigations of Higgs self coupling (via HH production)
 - Vector boson scattering: is this Higgs alone responsible for unitarizing $\sigma(V_L V_L \rightarrow V_L V_L)$
 - Sensitivity to VBF/VBS drives performance requirements in forward region

• Searches: increased sensitivity to rare SM/BSM processes

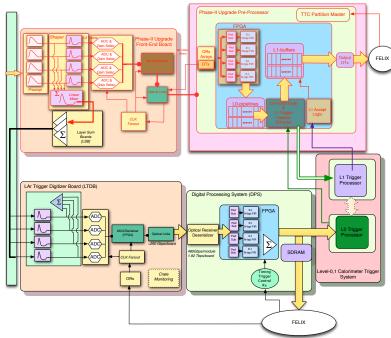

- Exploration of Run-3 hints observations or discoveries.
- Or (better?) the unexpected

					26			
Detector system	Trigger–DAQ		Inner Tracker	Inner Tracker + Muon Spectrometer		Inner Tracker + Calorimeter		
		ency/ sholds						
Object Performance Physics Process	μ^{\pm}	e±	b-tagging	μ^{\pm} Identification/ Resolution	Pile-up rejection	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	
$H \longrightarrow 4\mu$ VBF $H \rightarrow ZZ^{(*)} \rightarrow \ell\ell\ell\ell$ VBF $H \rightarrow WW^{(*)} \rightarrow \ell\nu\ell\nu$	55	5	1	5 5 5	5	55	1	
SM VBS ssWW	1	1		1	1	1	1	
SUSY, $\chi_1^{\pm}\chi_2^o \rightarrow \ell b \bar{b} + X$ BSM $HH \rightarrow b \bar{b} b \bar{b}$	1	1	1 1	1	✓	1	1	

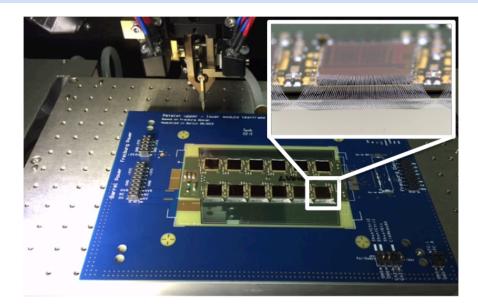
[LHCC-G-166: physics processes for Phase-II performance studies]

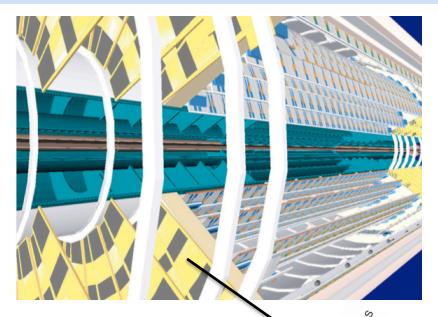
The High-Luminosity LHC (HL-LHC)

- Formally approved by CERN Council in June 2016
- Highest priority future project for European and U.S. particle physics communities
- High priority of Canadian subatomic physics community
- Significant detector challenges in this environment with up to 200 separate proton-proton collisions per bunch-crossing ("pileup")


90% of the data to be produced by the LHC will be come during the HL-LHC phase

Liquid Argon Calorimeter Electronics Upgrade


LAr Calorimeter electronics: Front-End (FE), Back-End(BE)

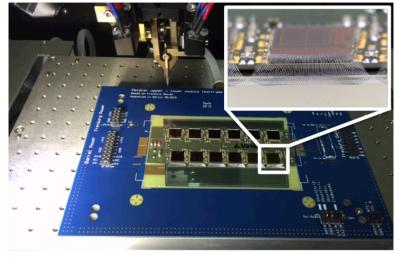

- On-detector front-end readout electronics must be entirely replaced:
 - Existing FE electronics would not survive radiation dose at the HL-LHC, and are incompatible with Phase-II trigger scheme (data-taking rate)
 - Trigger electronics already being upgraded in LS2. Will remain for HL-LHC
- Replacement of FE system requires replacement of BE system
- Readout of Hadronic Endcap Calorimeter (HEC) is special:
 - Canadians have particular expertise here
- Planned Canadian contributions to:
 - The design and testing of the new electronics with a focus on the HEC FE
 - BE signal processing techniques
 - Manufacture and installation of new of FE and BE electronics

[Victoria, TRIUMF, McGill]

Phase-II Tracker Upgrade (ITk)

Endcap "petal"

⁴BC₁₃₀


- Excellent tracking needed for the HL-LHC physics program
 - Need precision vertexing to identify the primary vertex to which hard-scatter products are associated (pileup suppression)
- New tracker (ITk) will have pixels closest to the interaction point, and Si-strip detectors beyond this
 - 18k Si-strip modules needed in total / 7000 in endcaps
- Canadian group proposing to construct 20% of the full Endcap Strips detector (modules, "petals")
 - 1500 Si strip modules ≈ 83 petals

Endcap

Module

Phase-II Tracker Upgrade (ITk)

- Sophisticated wire-bonding required: ~50 wire-bonder years needed
 - Requires many sites
- Two Canadian production / testing sites:
 - West (TRIUMF, UBC, SFU)
 - East (Toronto, Carleton, York, Montreal)
- Module production:
 - Mainly industrial in the East (Celestica)
 - "in house" in the West:
 - TRIUMF has invested in necessary infrastructure (+ SFU JELF)
 - also 2016 TRIUMF hire of silicon detector expert
- Beyond module production
 - Industrial production of "hybrid" boards (first stage of readout) [eastern site]
 - Si strip detector acceptance testing
 - Industrial probing / dicing of ASIC wafers for hybrid boards
 - Precision placement of modules onto support structure
 - DAQ development

[both sites] [eastern site, industry] [western site]

ATLAS Canada Operations & Upgrade Funding

- Operations: currently in final year of three-year NSERC project grant
 - We will continue to request operating support from NSERC
- Phase-1 Upgrades
 - LAr, NSW projects currently under construction, funded by CFI IF 2015 award
 - Significant initial R&D support from NSERC in 2013, 2014
 - Support from TRIUMF (beyond that funded by CFI)
- Phase-2 Upgrades
 - NSERC RTI awards in 2016 and 2017 for R&D phase
 - Toronto OCE-VP1 for R&D work with Celestica
 - SFU JELF for Si detector infrastructure matching from TRIUMF
 - Construction funding requested from CFI in IF 2017 competition:
 - Multi-institutional: all ATLAS-Canada institutions provided CFI envelope share
 - LAr Electronics, ITk, Upgrade Common Fund
 - Decision known but not public yet.

Computing

- IF 2017 proposal for Tier-1 hardware refresh: decision know but not public

TRIUMF 5YP 2020-25 and Beyond

- ATLAS Canada activities from 2020-2025:
 - Completion of Run-2 data analysis (data taking ends at end of 2018)
 - Installation (2019-2020) and commissioning (2021) of Phase-1 upgrades
 - Run-3 operations, analysis, publications
 - Construction & Installation of Phase-2 upgrade contributions
 - Work needs to begin before 2020 but extends through to 2025
 - Support from TRIUMF needed for these projects
 - TRIUMF Review of Phase-2 upgrade projects in fall 2016 (prior to CFI submission)
 - Formal Gate-2 review still to take place
 - Funds requested for TRIUMF-based manpower in CFI request
 - Increased following review, at the request of the review committee
 - Will need to define contributions to ATLAS Computing in HL-LHC era
- ATLAS Canada activities from 2025-2035:
 - Completion of Run-3 data analysis
 - Installation / commissioning of HL-LHC + ATLAS detector upgrades
 - ATLAS Canada computing for HL-LHC era

HL-LHC Planning / Luminosity Profile

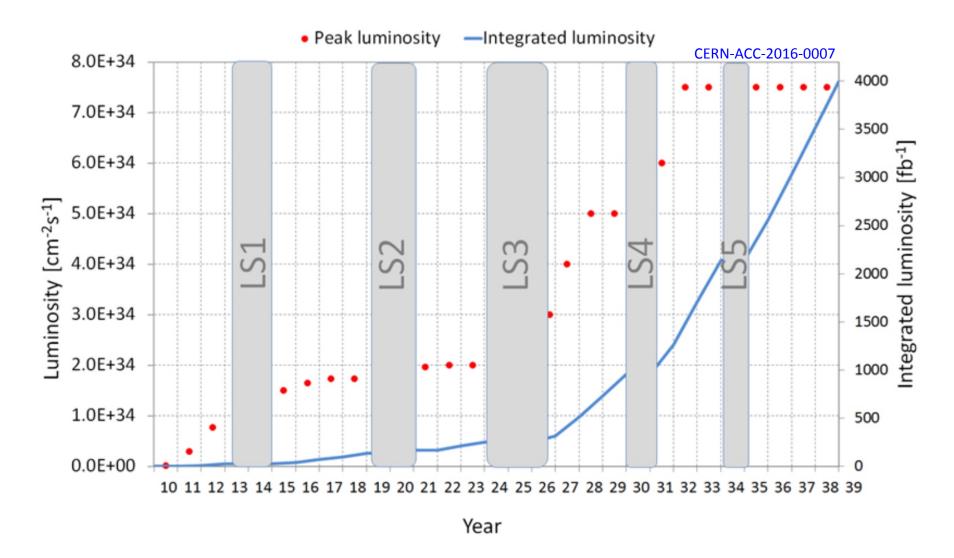


Figure 7: Evolution of peak and integrated luminosity along the LHC and HL-LHC lifetime. The goal of 3000 fb^{-1} might be overcome and $4000 \text{ or more } \text{fb}^{-1}$ can be reached before year 2040.

P.Krieger, U of T

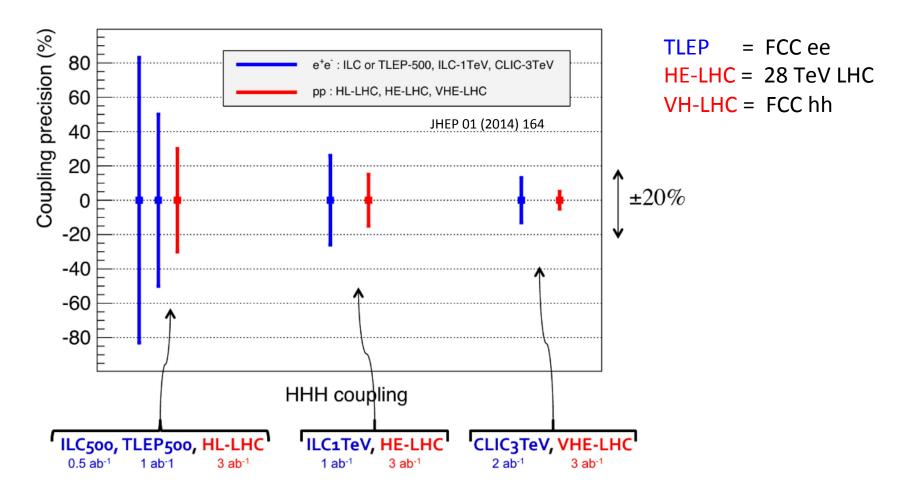
Particle Physics, Nuclear Physics and Beyond: TRIUMF Science Week, July 2017

Canadian Contributions to the HL-LHC

• CERN has requested that we contribute to the HL-LHC accelerator upgrade

- Canada made significant contributions to the LHC construction (~\$40M)
 - Warm quadrupole magnets, pulse-forming networks for injection kickers, other beamline work, and beam-dynamics simulation studies
 - These projects were performed or overseen by TRIUMF personnel
- New contributions will need community support and involvement of TRIUMF
 - Discussions re-starting: needs to converge in time for the 2018 federal budget
 - CERN DG Fabiola Gianotti will be at ICFA meeting in Ottawa in November

Initial request from CERN was for replacement warm quadrupole magnets


- One of the original Canadian contributions to the LHC
- CERN has since determined that the radiation damage is not as severe as expected
- New request is for a contribution to the crab cavities (CC)
- Accelerator division in discussion with CERN about CC contributions
- TRIUMF already working on some HL-LHC beam-beam studies
- This is *independent* of discussions related to possible CERN Associate Membership for Canada (which is a longer-term issue)

Beyond 2030

- The HL-LHC scheduled to operate until late 2030s
- International community already thinking about what comes after this:
 - HE-LHC: re-use LHC tunnel for higher energy pp machine
 - 16 T dipole magnets to double collision energy (28 TeV)
 - 11 T Nb₃Sn dipoles already under development for HL-LHC
 - Linear e⁺e⁻ Collider:

 - ILC (√s up to 1 TeV)
 CLIC (√s up to 3 TeV)
 (Linear Collider Collaboration (LCC) encompasses both)
 - Future Circular Collider (80-100 km circumference) :
 - FCC: ee, hh, eh options (Europe)
 - CEPC (ee) proposal in China: can also be upgraded to pp machine in later stage
- Canada will clearly want to be involved in this physics program:
 - Canadian strategy has long been to maximize impact by focusing effort
 - Also would plan to contribute to accelerator R&D and construction:
 - These contributions would presumably again be pursued via TRIUMF

Beyond 2030: Higgs Self-Coupling Sensitivity

Future accelerators can operate as both Higgs and top factories BSM physics program will depend on results from LHC / HL-LHC

P.Krieger, U of T

Summary

- For the 2020-25 period of the next TRIUMF 5YP:
 - Canadian contributions to ATLAS operation & upgrades well defined
 - Canadian contributions to the accelerator upgrade program under discussion
- TRIUMF playing a key role in all Canadian ATLAS upgrade projects
 - For both Phase-1 and Phase-2
 - And of course in ongoing ATLAS operations and physics studies
 - Canadian accelerator contributions will need to be managed through TRIUMF
- The future of ATLAS-Canada computing in the HL-LHC era is not yet well defined, but Canada will need to contribute:
 - Currently TRIUMF plays an important role in ATLAS-Canada computing
 - Expect that we will need to submit a future funding proposal for HL-LHC era ATLAS computing contributions sometime in 2020-2025
- Canadian community will want to contribute to next generation collider experiments:
 - Accelerator contributions would be expected to go through TRIUMF
 - This of course will require broad support of the Canadian community