CERN NA62: Flavor and Dark Mater Factory

Bob Velghe^{*}

TRIUMF Science Week, July 13, 2017

Futures studies of rare π and K decays (K⁺ $\rightarrow \pi^+ \nu \overline{\nu}, \pi^+/K^+ \rightarrow e^+ \nu, \pi^+/K^+ \rightarrow \mu^+ \nu$) and search for **dark particles** using extension of CERN NA62 could results in order of magnitudes advances.

^{*}For TRIUMF and UBC NA62 Group

Motivations

In the SM, flavor is an ad hoc add-on; no fundamental theory. Flavor issues impact many aspects of BSM tests.

Illustration: Impact of heavy sterile neutrinos on various phenomena:

Drewes and Garbrecht. [arXiv:0808.2459].

There are hints of new flavor anomalies in B physics.

Lepton Flavor Universality - Current Situation

On the experimental front:

► Charged currents ($B^0 \rightarrow D^{(\star)-}\tau^+\nu_{\tau}, B^0 \rightarrow D^{(\star)-}\mu^+\nu_{\tau}$): Possible \mathcal{O} (10 – 20%) flavor universality violation in $b \rightarrow c\tau\nu$

 $2-3\sigma\, {\rm effect}$ [(Belle, Babar, LHCb)].

Not seen at $\mathcal{O}(0.2\%)$ in other charged current reactions involving e, μ, τ decays.

► Neutral currents $(B^0 \to K^{*0} | ^+ | ^-)$: Possible e/μ universality violation in $b \to s\mu\mu$

 2σ effects [LHCb collaboration. arXiv:1705.05802].

On the theoretical front:

LFV confined to the 3rd generation. Effect related to the masses e.g. $m_{\tau}^2/m_{\mu}^2\approx 283$

- New flavor changing coupling beyond the SM or MFV?
- Lepton flavor violating couplings?
- ► Scalar leptoquarks, new Z', etc.

Precise measurements of $K^+ \to \pi^+ \nu \overline{\nu}$, $\pi^+ \to e^+ \nu$, $K^+ \to e^+ \nu$ can be used to corroborate models and search for BSM effects at the 1000 TeV scale.

${\rm K}^+ ightarrow \pi^+ \nu \bar{ u}$ – In the Standard Model

Flavour Changing Neutral Current (FCNC)

- Short distance contribution dominates (top, charm),
- ► Hadronic matrix elements $\langle K|Q_i(\mu)|\pi\nu\bar{\nu}\rangle$ are related to $K^+ \rightarrow \pi^0 e^+ \nu_e \operatorname{decay}_{(F. Mescia and C. Smith (Phys. Rev. D, 76, 034017)].,$
- ► Long distance contribution suppressed (GIM mechanism).

$$\mathcal{B}_{\text{Exp}}\left(K^{+} \to \pi^{+} \nu \bar{\nu}\right) = \left(17.3^{+11.5}_{-10.5}\right) \times 10^{-11}$$

E949, A.V. Artamonov et al. [arXiv:0808.2459].

$$\mathcal{B}_{SM} \left(\mathsf{K}^+ o \pi^+ \nu \bar{
u}
ight) = (9.11 \pm 0.72) imes 10^{-11}$$

J. Brod, M. Gorbahn and E.Stamou, [arXiv:1009.0947], updated by A.J. Buras et al. [arXiv:1503.02693].

${\rm K}^+ \rightarrow \pi^+ \nu \bar{\nu}$ – Beyond the Standard Model

A. J. Buras, D. Buttazzo and R. Knegjens [arXiv:1507.08672].

- Minimal Flavor Violation models,
- Randall-Sundrum models, general LH/RH couplings,
- Models in which $\epsilon_{\mathbf{K}}$ constraint applies,
- SUSY models, Littlest Higgs models, etc.

Other potential correlations of $K^+ \to \pi^+ \nu \overline{\nu}$ with $K^0_L \to \mu \mu, \epsilon' / \epsilon, B \to K (K^*) \mu \mu$.

$$\frac{\mathcal{R}^{+} \rightarrow e^{+}v(\gamma)}{\pi^{+} \rightarrow \mu^{+}v(\gamma)}$$
Possibly the most accurately calculated weak
process involving hadrons – FLAVOR Universality
 $R_{e/\mu}^{th} = (1.2353 \pm 0.0001)x10^{-4}$
Current Result PIENU: $R_{e/\mu}^{exp\pi} = 1.2344 \pm 0.0030x10^{-4}$ (±0.2%)
Future: PIENU, PEN <0.1%
 $K_{e/\mu}^{t} = (2.477 \pm 0.001)x10^{-5}$
Current Result NA62: $R_{e/\mu}^{expK} = 2.488 \pm 0.010x10^{-5}$ (±0.4%)
Future: NA62, TREK: 0.2%
New NA62 could
reach SM precision
0.04%!
New NA62 could
reach SM precision
0.04%!

NA62 Experiment for ${\rm K}^+ \to \pi^+ \nu \overline{\nu}$

 $\mathcal{B}(\mathrm{K}^+ \to \pi^+ \nu \bar{\nu})$ with a relative (statistical) uncertainty around 10 %.

We need $\mathcal{O}(100)$ events with 10% precision background measurement.

Kaon decay in flight

- ▶ 10¹³ kaon decays,
- ▶ 10% signal acceptance,
- ► > 10¹² background rejection.

NA62 Setup

In operation 2015-2018; possible extension 2020-2014.

- Beam [75 GeV/c, K, π and p (6:70:23)] tracking and PID at 750 MHz,
- Charged decay particle tracking,
- Charged decay particle time stamping \mathcal{O} (100 ps),
- ► Hermetic photon coverage,
- Particle ID.

$$m_{\rm mass}^2 = \left(P_{\rm K} - P_{\pi^+} \right)^2$$

NA62 is a versatile tool!

NA62: Kaon Factory!

Up to $10^{13}\,\rm kaon\,decays \rightarrow 1\text{-}3$ orders of magnitude improvement for rare decays.

K ⁺ decay mode	Physics	Present limit (90 % C.L.) / Result	NA62
$\pi^{+}\mu^{+}e^{-}$	LFV	1.3×10^{-11}	10-12/10-13
$\pi^{+}\mu^{-}e^{+}$	LFV	5.2×10^{-10}	$10^{-12}/10^{-13}$
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	$10^{-12}/10^{-13}$
$\pi^{-}e^{+}e^{+}$	LNV	6.4×10^{-10}	10-12
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	$10^{-12}/10^{-13}$
$\mu^{-}\nu e^{+}e^{+}$	LNV/LFV	2.0×10^{-8}	10-12
$e^{-\nu\mu^{+}\mu^{+}}$	LNV	-	10-12
π ⁺ X ⁰	New Particle	$5.9 \times 10^{-11} (m_{\rm v0} = 0)$	10-12
$\pi^+\chi\chi$	New Particle	N.A.	10-12
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10-11
$\pi^{+}\pi^{+}\mu^{-}\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10-11
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10-12
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 {\rm MeV}$	-
RK	LU	$(2.488 \pm 0.010) \times 10^{-5}$	> 2× better
$\pi^+\gamma\gamma$	χ PT	< 500 events	10 ⁵ events
$\pi^{0}\pi^{0}e^{+}\nu$	χ_{PT}	66000 events	$\mathcal{O}(10^6)$ events
$\pi^{0}\pi^{0}\mu^{+}\nu$	$\chi_{\rm PT}$	-	$\mathcal{O}(10^5)$ events
$\pi^0 \to invisible, \pi^0 \to U\gamma$ Dark sector			

arxiv:1512.03069

Search for Dark Stuff with NA62

10

There's a Lot to Come !

- Rare μ, π, K, B decays have unique and important roles to play in the search of new physics including exotic effects like Flavor Universality and Lepton Flavor Violations
 - \rightarrow Sensitivity to very high mass scales.
- Future NA62 could make orders of mag. advances. Complementary to experiments involving muons, pions, and *B* mesons.
 Rich experimental program: KOTO, MEG, DeeMee, COMET, Mu2E, Mu3E, Belle II, LHCb, ATLAS, CMS, etc.