TRIUMF Science Week - July 2017

# Dark Sectors at the Precision/Intensity Frontier

Adam Ritz University of Victoria



### Motivating Questions...

#### Sakharov's criteria for generating a baryon asymmetry are 50 years old!

VIOLATION OF CP INVARIANCE, C ASYMMETRY, AND BARYON ASYMMETRY OF THE UNIVERSE

A. D. Sakharov Submitted 23 September 1966 ZhETF Pis'ma 5, No. 1, 32-35, 1 January 1967

The theory of the expanding Universe, which presupposes a superdense initial state of matter, apparently excludes the possibility of macroscopic separation of matter from antimatter; it must therefore be assumed that there are no antimatter bodies in nature, i.e., the

- Developed at a time before there was clear evidence for dark matter or neutrino mass...
- Now matter-genesis, and precision cosmology generally, provides even more empirical motivation for BSM physics...

#### Understanding the matter content

#### Sakharov's criteria for generating a baryon asymmetry are 50 years old!

VIOLATION OF CP INVARIANCE, C ASYMMETRY, AND BARYON ASYMMETRY OF THE UNIVERSE

A. D. Sakharov Submitted 23 September 1966 ZhETF Pis'ma 5, No. 1, 32-35, 1 January 1967

The theory of the expanding Universe, which presupposes a superdense initial state of matter, apparently excludes the possibility of macroscopic separation of matter from antimatter; it must therefore be assumed that there are no antimatter bodies in nature, i.e., the

- Developed at a time before there was clear evidence for dark matter or neutrino mass...
- Now matter-genesis, and precision cosmology generally, provides even more empirical motivation for BSM physics...



#### New physics in a dark/hidden sector

Arguably, most *empirical* evidence for new physics (e.g. neutrino mass, dark matter) doesn't point a priori to a specific mass scale, but rather to a hidden (or dark) sector, neutral under the SM.



all options deserve exploration, so what theoretical guidance is there...?

#### New physics in a dark/hidden sector

Arguably, most *empirical* evidence for new physics (e.g. neutrino mass, dark matter) doesn't point a priori to a specific mass scale, but rather to a hidden (or dark) sector, neutral under the SM.



#### New physics in a dark/hidden sector

Arguably, most *empirical* evidence for new physics (e.g. neutrino mass, dark matter) doesn't point a priori to a specific mass scale, but rather to a hidden (or dark) sector, neutral under the SM.



But we can be more systematic in studying the mediation channels...



$$\mathcal{L} = \sum_{n=k+l-4} \frac{\mathcal{O}_k^{(SM)} \mathcal{O}_l^{(med)}}{\Lambda^n} \sim \mathcal{O}_{portals} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

Generic interactions are irrelevant (dimension > 4), but there are three *UV-complete* relevant or marginal "portals" to a neutral hidden sector, unsuppressed by the (possibly large) NP scale  $\Lambda$ 

• Vector portal\*: 
$$\mathcal{L} = -rac{\kappa}{2} B^{\mu
u} V_{\mu
u}$$
 [Okun; Holdom; Foot et al]

• Higgs portal:  $\mathcal{L} = -H^{\dagger}H(AS + \lambda S^2)$  [Patt & Wilczek]

• Neutrino portal: 
$$\mathcal{L}=-Y_N^{ij}ar{L}_iHN_j$$

\*Alternate Notation :  $\kappa = \epsilon$ ,  $V_{\mu} = A'_{\mu}$ 

Many more UV-sensitive interactions at dim  $\geq$  5



$$\mathcal{L} = \sum_{n=k+l-4} \frac{\mathcal{O}_k^{(SM)} \mathcal{O}_l^{(med)}}{\Lambda^n} \sim \mathcal{O}_{portals} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

• Vector portal: 
$$\mathcal{L} = -\frac{\kappa}{2}B^{\mu\nu}V_{\mu\nu}$$
  
• Higgs portal:  $\mathcal{L} = -H^{\dagger}H(AS + \lambda S^2)$   
• Neutrino portal:  $\mathcal{L} = -Y_N^{ij}L_iHN_j$ 

Naturally introduces force mediators (V, S), that e.g. can enable sufficient light dark matter annihilation in the early universe



$$\mathcal{L} = \sum_{n=k+l-4} \frac{\mathcal{O}_k^{(SM)} \mathcal{O}_l^{(med)}}{\Lambda^n} \sim \mathcal{O}_{portals} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

• Vector portal: 
$$\mathcal{L} = -\frac{\kappa}{2}B^{\mu\nu}V_{\mu\nu}$$
  
• Higgs portal:  $\mathcal{L} = -H^{\dagger}H(AS + \lambda S^2)$   
• Neutrino portal:  $\mathcal{L} = -Y_N^{ij}\overline{L}_iHN_j$ 

Naturally incorporates models of neutrino mass, and leptogenesis, and a scalar singlet can aid EW baryogenesis via a 1st order phase transition.



Universal couplings to EM/scalar currents at low energy, so hidden sector models have correlated observable effects

# Experimental probes of the portals & light NP



- rare (visible) decays
  - e.g. collider/fixed target production plus e.g. leptonic A' decays,  $O(\kappa^2) \times Br(SM)$

#### rare (invisible) decays/missing E

- e.g. collider production plus missing energy in decays and scattering,  $O(\kappa^2) \times Br(Hid)$ 

#### anomalous NC-like scattering

- e.g. fixed target production plus anomalous NC-like scattering,  $O(\kappa^2 \times \kappa^2 \alpha')$ 

(also astrophysics & cosmology)

# Ongoing efforts (colliders, fixed targets,...)



### Experimental probes of the portals & light NP



# Experimental probes of the portals & light NP



(also astrophysics & cosmology)

#### E.G. probes of the vector portal





#### E.G. probes of the neutrino portal



#### Experimental probes of the portals & light NP



#### EDM Sensitivity over the past 30 years





- At current sensitivity levels, lepton EDMs primarily probe NP with new UV dofs, unlike other precision probes such as LFV, LNV, muon g-2, etc.
  - Similar statements apply to hadronic EDMs (n, Hg), although detections at current precision can be interpreted in terms of  $\theta_{QCD}$ .

# Experimental probes of the portals & light NP



(also astrophysics & cosmology)

### Experimental probes of the portals & light NP



Dark Sectors allow for sub-GeV mass thermal relic DM models (e.g. "light WIMPs"), accessible at intensity frontier experiments

#### Direct detection & Intensity frontier searches

Hidden sector scalar/pseudo-Dirac fields (x) coupled to the vector portal are good DM candidates, accessible at the intensity frontier... [Batell, Pospelov, AR, deNiverville, McKeen, Essig, Schuster, Izaguirre, Krnjaic, Kahn, Morrissey, ...]



Scalar Elastic DM (Kinetic Mixing)

<sup>[</sup>Krnjaic, Cosmic Visions 2017]

*Basic idea:* use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam.



Align the beam off-target, to minimize the neutrino background

[Batell et al '09, '14, deNiverville et al '11, '12 '16, + MiniBooNE '12, Dobrescu et al '15] 23

#### E.G. fixed target probes using neutrino detectors (MiniBooNE)

*Basic idea:* use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam.



#### Sample event rates - T2K

#### [deNiverville et al '12, '16]



ND280 - P0D

**SuperK** 

#### **Future Neutrino facilities**

#### COHERENT (SNS)

#### SHiP (LArTPC at 100m)



Includes V-production via pion capture:  $\pi$  + p  $\rightarrow$  n + V

[deNiverville et al '16]

[deNiverville et al '15]

# Experimental probes of the portals & light NP



(also astrophysics & cosmology)

#### Future reach in e/p channels...

#### **Missing Mass/Mtm**

#### Scattering



[B. Echenard, E. Izaguirre, WG3 Summary, Cosmic Visions 2017]

#### Summary





*Empirical* motivations for new physics suggest dark/hidden sectors, which can contain light (sub-EW scale) degrees of freedom:

- EFT arguments focus attention on the "portal interactions".
- Active experimental efforts at the precision and intensity frontier over the past 7-8 years.
- Overlap with high-intensity fixed target & collider programs (e.g. neutrino experiments), and potential for synergistic analyses.

# **Extra Material**

# Experimental probes of the portals & light NP



- rare (visible) decays
  - e.g. collider/fixed target production plus e.g. leptonic A' decays, O(κ<sup>2</sup>) x Br(SM)

#### anomalous NC-like scattering

- e.g. fixed target production plus anomalous NC-like scattering,  $O(\kappa^2 \times \kappa^2 \alpha')$ 

(also astrophysics & cosmology)

#### E.G. Probes of the scalar portal



# Experimental probes of the portals & light NP



(also astrophysics & cosmology)

#### "Minimal" sub-GeV DM model



- Allows viable sub-GeV thermal relic DM candidates [Boehm et al '03, Fayet '04,'06; Pospelov, AR, Voloshin '07; Hooper & Zurek '08].
- For  $m_{DM} < m_V$ , the correct relic density fixes a specific relation between  $\{\kappa, \alpha', m_V, m_{DM}\}$  [Pospelov, AR & Voloshin '07]

(NB: notation  $\kappa = \varepsilon$  for some later plots)

#### Fixed target probes - Neutrino Beams

[Batell et al '09, '14, deNiverville et al '11, '12 '16]



*Basic idea:* use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam.



#### Fixed target - DM production



### DM Production - $\pi$ , $\eta$ distributions

Burman-Smith (800 MeV) Distribution



9 GeV 1.4 1.2  $10^{2}$ 1.0 Angle (rad) 0.8 0.6  $10^{1}$ 0.4 0.2 0.0 ົດ 2 З Momentum (GeV)

Sanford Wang Distribution

- Rate for π<sup>0</sup>,η given by averaging rates for π<sup>+</sup>, π<sup>-</sup>
- calibrated for thin targets, so will broaden for an absorber
- charged mesons are magnetically focused, and neutrino energy spectrum has a lower peak

#### Signatures

Characteristic DM (in)elastic scattering signatures



Mimics scattering of neutrinos, which provide dominant background.

#### Neutrino backgrounds...

Neutrino elastic scattering provides a large background at all v-beam facilities with a decay volume after the target, e.g. at MiniBooNE



~10<sup>5</sup> -10<sup>6</sup> scattering events, with neutral current cross-sections measured to O(18%) [MiniBooNE '10]

Counting experiments are not enough...

### Neutrino backgrounds...

#### However, there are ways to enhance S/B

- Run as a "beam dump"
  - steer beam past target and into absorber. This removes decay volume, cuts down neutrino background by a large factor (but cannot run in "parasitic" mode, unless well off axis)
- Timing
  - time delay (Y=10) = O(10ns), effective for higher mass
  - possible at MiniBooNE, also very effective at a far detector (e.g. T2K  $\rightarrow$  SuperK)
- Energy cuts (especially if detector is off-axis)
  - neutrino beam peaks at lower energy
  - different scattering kinematics
- Scattering angle cuts
  - forward angle cut very effective with electron scattering

Multiple techniques are being tested in the current MiniBooNE analysis

# **Experimental Facilities**

- LSND
  - 800 MeV, 10<sup>23</sup> POT, off-axis detector at 30m (no decay volume, so effectively a beam dump)
- MiniBooNE (absorber)
  - 9 GeV, 2x10<sup>20</sup> POT, 650 ton on-axis detector at 450m

• T2K

- 30 GeV beam, 10<sup>21</sup> POT, 2° off-axis detectors,
  - near (~2ton, 280m), far (~50 kton, Super-K)
- (also CHARM, MINOS,...)
- Future
  - COHERENT @ SNS (1 GeV, 10<sup>23</sup> POT/yr, 90° off-axis at 20m)
  - SHiP (400 GeV, 10<sup>20</sup> POT, ~10 ton LArTPC on-axis at ~100m)
  - MicroBooNE & NOvA
  - -LBNF/DUNE,...

# Experimental probes of the portals & light NP



(also astrophysics & cosmology)

### CP (or T) Violation in the SM + v-mixing



#### EDMs as precision probes...

#### EDMs are powerful (amplitude-level) probes for new CP/T violation

$$H = -d\vec{E} \cdot \frac{\vec{S}}{S}$$

#### Paramagnetic EDMs

Harvard/Yale (ThO) [Baron et al. '13] JILA, NIST (HfF<sup>+</sup>) [Cairncross et al. '17] Imperial (YbF) [Hudson et al. '11]

#### Diamagnetic EDMs

U Washington (Hg) [Graner et al '16]

U Michigan (Xe) [Rosenberry & Chupp '01] Argonne (Ra) [Bishof et al '16]

#### Neutron EDM

Sussex/RAL/ILL [Baker et al. '06, Pendlebury et al '15]

(and others in development around the world, including at *TRIUMF*)

 $|d_e^{\text{equiv}}| < 8.7 \times 10^{-29} \, e\text{cm}$ 

 $|d_{\rm Hg}| < 7.4 \times 10^{-30} \, e {\rm cm}$ 

 $|d_n| < 3 \times 10^{-26} e \mathrm{cm}$ 

#### EDMs as precision probes...



#### Looking back ~30 years (~1985)...



Comparison with direct mass limits on new (strongly-interacting) particles...



(assuming O(1) CP phases)

#### Looking back 0 years...



#### EDMs in the Standard Model (CKM phase)



#### **CP-odd EFT**







(CP-odd source of this kind recently applied to EWBG [Cline et al '17])

