

Canada's national laboratory for particle and nuclear physics and accelerator-based science Laboratoire national canadien de physique des particules, de physique nucléaire et de science fondée sur les accélérateurs

Decay Spectroscopy of Neutron-rich Cd Approaching the N = 82 Shell Closure

Nikita Bernier, UBC and TRIUMF For the GRIFFIN Collaboration

Winter Nuclear and Particle Physics Conference

February 16th, 2018.

- Rapid neutron capture (*r*-) process path formed by waiting point nuclei, where most of the *r*-process material within an isotopic chain accumulates and β-decays
- N = 82 isotope ¹³⁰Cd provides critical information on the position and shape of the 2nd *r*-process **abundance peak** at $A \sim 130$.

Special interest for nuclear structure since ¹²⁸⁻¹³²Cd are neighboring the doubly-magic ¹³²Sn which is central to shell model predictions: ¹³⁰Cd is 2p hole, ¹²⁸Cd is 2p-2n hole.

	128Sn 59.07 M	129Sn 2.23 M	130\$n 3.72 M	131Sn 56.0 S	132Sn 39.7 S	133Sn 1.46 S	134Sn 1.050 S	1358n 530 MS	136Sn 0.25 S
z	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.03%	β-: 100.00% β-n: 17.00%	β-: 100.00% β-n: 21.00%	β-: 100.00% β-n: 30.00%
49	127In 1.09 S	128In 0.84 S	129In 0.61 S	130In 0.29 S	131In 0.28 S	132In 0.207 S	133In 165 MS	134In 140 MS	135In 92 MS
	R-+ 100 00%		570 (10) ms	284 (10) ms	261 (3) ms	198 (2) ms	163 (7) ms	126 (7) ms	103 (5) ms
	β-n≤ 0.03%	810 (30) ms	β-n: 0.25%	β-n: 0.93%	β-n≤ 2.00%	β-n: 6.30%	β-n: 85.00%	β-n: 65.00%	β-n
48	126Cd 0.515 S	127Cd 0.37 S	128Cd 0.28 S	129Cd 0.27 S	130Cd 162 MS	131Cd 68 MS	132Cd 97 MS	133Cd 57 MS	
	β-: 100.00%	β-: 100.00%	245 (5) ms	154 (8) ms	127 (2) ms	98 (2) ms	82 (4) ms	64 (8) ms	
				131 (13) 113	p-11. 5.56%	p-11. 0.00%	p=11:00:0000	P 11	
47	125Ag 166 MS	126Ag 107 MS	127Ag 109 MS	128Ag 58 MS	129Ag 46 MS	130Ag ≈50 MS			
	β-: 100.00% β-n	β-: 100.00% β-n	β-: 100.00%	β-: 100.00% β-n	β-: 100.00% β-n	β-n β-			
46	124Pd 38 MS	125Pd >230 NS	126Pd >230 NS		128Pd >394 NS	Recent t _{1/2} measurements:			
	β-: 100.00%	β-n β-	β-n β-		β-n β-	Lorusso et al., PRL 114, 192501 (2015) Taprogge et al., PRC 91, 054324 (2015)			
	78	79	80	81	82	83	84	85	N

Special interest for nuclear structure since ¹²⁸⁻¹³²Cd are neighboring the doubly-magic ¹³²Sn which is central to shell model predictions: ¹³⁰Cd is 2p hole, ¹²⁸Cd is 2p-2n hole.

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Measured background suppression by factors 10⁵-10⁶

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Measured background suppression by factors 10⁵-10⁶
- High statistics β-γ-γ with SCEPTAR : SCintillating Electron Positron Tagging Array

In-vacuum moving tape collector system

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Measured background suppression by factors 10⁵-10⁶
- High statistics β-γ-γ with SCEPTAR : SCintillating Electron Positron Tagging Array
- 16 large-volume High Purity Germanium clover GRIFFIN detectors dedicated to decay spectroscopy of the low-energy radioactive ion beams at TRIUMF.

In-vacuum moving tape collector system

- 1988 experiment in Sweden: 7 transitions and 4 levels
- Multipolarities from conversion electron measurements.

Work by B. Ekstrom quoted in B. Fogelberg, Nucl. Data for Sc. and Tech., **837** (1988)

Z. Elekes and J. Timar, Nucl. Data Sheets 129, 191 (2015)

Further discrimination of isobaric background:

 Identification of transitions by comparing laser on (Cd + In) and laser blocked (mostly In)

Tape cycle structure

Counts/ke/

8000

6000

6

Gamma-RAInbow

28 Cd activity 28 In activity

128 Cd+In activity

Further discrimination of decaying daughters:

 Identification of transitions by comparing beam on data (Cd + In) and beam off data (mostly In)

β - γ - γ coincidence analysis

Energy [keV]

Energy [keV]

60 62

β - γ - γ coincidence analysis

- 28 new transitions and 11 new states
- Spin assignments with log(ft) values and Shell Model predictions

B. Fogelberg, Nucl. Data for Sc. and Tech., 837 (1988) in black

- 28 new transitions and 11 new states
- Spin assignments with log(ft) values and Shell Model predictions

B. Fogelberg, Nucl. Data for Sc. and Tech., 837 (1988) in black

- First 1+ decays ~100% to the ground state
- J. Holt from TRIUMF theory group is working on further calculations.

- 7 transitions observed in ¹³¹In at ISOLDE, 23 at RIKEN: only 3 transitions in common
- No γ -transitions observed from the β -decay of ¹³²Cd to ¹³²In.

O. Arndt *et al.*, Acta Phys. Pol. B **40**, 437 (2009) C. Jost, PhD thesis, U of Mainz (2010)

J. Taprogge et al., Eur. Phys. J. A 52, 347 (2016)

J. Taprogge et al., Phys. Rev. Lett. 112, 132501 (2014)

- 32 hours at ~0.8 pps, comparable to EURICA/RIKEN statistics
- Many transitions confirmed: 5/7 (O. Arndt *et al.*, Acta Phys. Pol. B 40, 437, 2009)
 22/23 (J. Taprogge *et al.*, Eur. Phys. J. A 52, 347, 2016)

- Very low neutron separation energy \rightarrow large neutron branching ratio (P_n)
 - 988 keV in both ¹³¹⁻¹³²Cd datasets
 - No γ -transitions observed from β -decay of ¹³²Cd into ¹³²In, yet
 - P_n closer to 100% than previously reported: 60(15) %

β-decay(?) of ¹³²Cd

Detailed γ -spectroscopy of ¹²⁸⁻¹³²Cd β -decay in progress

- ¹²⁸Cd nuclear structure:
 - 28 new transitions and 11 new levels so far
 - More Shell Model calculations, angular correlations....
- ¹³¹⁻¹³²Cd analysis in progress

- ¹²⁹⁻¹³⁰Cd analysis by Y. Saito [UBC/TRIUMF] and M. Bowry [TRIUMF]
- Half-lives of ¹²⁸⁻¹³⁰Cd: R. Dunlop *et al.*, Phys. Rev. C 93, 062801(R) (2016).

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Laboratoire national canadien de physique des particules, de physique nucléaire et de science fondée sur les accélérateurs

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA PHYSICS ASTRONOMY

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Merci! Thank you!

N. Bernier^{1,2}, I. Dillmann^{1,3}, R. Krücken^{1,2},
C. Andreoiu⁴, G.C. Ball¹, H. Bidaman⁵, V. Bildstein⁵, P. Boubel⁵, M. Bowry¹,
C. Burbadge⁵, R. Caballero-Folch¹, M.R. Dunlop⁵, R. Dunlop⁵, L.J. Evitts^{1,6},
F. Garcia⁴, A.B. Garnsworthy¹, P.E. Garrett⁵, G. Hackman¹, S. Hallam^{1,6},
J. Henderson¹, S. Ilyushkin⁷, A. Jungclaus⁸, D. Kisliuk⁵, J. Lassen^{1,9}, R. Li¹,
E. MacConnachie¹, A.D. MacLean⁵, E. McGee⁵, M. Moukaddam¹, B. Olaizola⁵,
E. Padilla-Rodal¹⁰, J. Park^{1,2}, O. Paetkau¹, C.M. Petrache¹¹, J.L. Pore⁴,
A.J. Radich⁵, P. Ruotsalainen¹, J. Smallcombe¹, J.K. Smith¹, D. Southall¹²,
C.E. Svensson⁵, S.L. Tabor¹³, A. Teigelhöfer^{1,9}, M. Ticu⁴, J. Turko⁵, and T. Zidar⁵

1 TRIUMF 2 U of British Columbia 3 U of Victoria 4 Simon Fraser U 5 U of Guelph 6 U of Surrey 7 Colorado School of Mines 8 CSIC Madrid 9 U of Manitoba 10 U Nacional Autonoma de Mexico 11 CSNSM Orsay 12 U of Waterloo 13 Florida State U