

Light Dark Matter Search with NEWS-G First Results and Outlook

Daniel Durnford Supervisor: Gilles Gerbier WNPPC 2018

- Low event rate (<<1 evt/kg/year):
 - Large exposures
- Background Events:
 - Clean materials and construction
 - Background discrimination
 - Shielding
 - Underground labs
- Small energy depositions:
 - Low energy thresholds

- Low event rate (<<1 evt/kg/year):
 - Large exposures

Background Events:

- Clean materials and construction
- Background discrimination
- Shielding
- Underground labs

Small energy depositions:

- Low energy thresholds

Low event rate (<<1 evt/kg/year):

- Large exposures

Background Events:

- Clean materials and construction
- Background discrimination
- Shielding
- Underground labs

Small energy depositions:

- Low energy thresholds

- Low event rate (<<1 evt/kg/year):
 - Large exposures
- Background Events:
 - Clean materials and construction
 - Background discrimination
 - Shielding
 - Underground labs
- Small energy depositions:
 - Low energy thresholds

Low event rate (<<1 evt/kg/year):

- Large exposures

Background Events:

- Clean materials and construction
- Background discrimination
- Shielding
- Underground labs

Small energy depositions:

- Low energy thresholds

Spherical Proportional Counter (SPC)

Simple design, single sensor Gas target, easily changeable High gain, low energy threshold Low A target → Good for low mass WIMPs

Spherical Proportional Counter (SPC)

(1) Primary Ionization

Mean energy to create one pair in Ne :

$$w_e = 36eV/pair$$
 $w_n = \frac{w_e}{Q(E_r)} \approx 5w_e$
(2) Drift of charges
Typical drift time surface → sensor : ~ 500 µs
(3) Avalanche of secondary er/ion pairs
Amplification of signal through Townsend avalanche
(4) Signal formation
Current induced by the ions drifting away from anode
(5) Signal readout
Induced current integrated by a charge sensitive pre-amplifier
and digitized at 2.08 MHz

Detector Principle

(1) Primary Ionization

Mean energy to create one pair in Ne :

$$w_e = 36eV/pair$$
 $w_n = \frac{w_e}{Q(E_r)} \approx 5w_e$

(2) Drift of charges

Typical drift time surface \rightarrow sensor : ~ 500 µs

(3) Avalanche of secondary e-/ion pairs

Amplification of signal through Townsend avalanche

(4) Signal formation

Current induced by the ions drifting away from anode

(5) Signal readout

Induced current integrated by a charge sensitive pre-amplifier and digitized at 2.08 MHz

Pulse Treatment

Rise time

Gaussian dispersion in arrival time due to diffusion of charges:

$$\sigma(r) = \left(\frac{r}{r_{sphere}}\right)^3 \times 20 \mu s$$

Rise time used for surface event discrimination

1) Electric field model

2) Drift of charges simulated

3) Energy response simulated

4) Pulses simulated: pre-amp response, ion current, noise

5) Same treatment as real data

1) Electric field model

2) Drift of charges simulated ⁰

3) Energy response simulated

4) Pulses simulated: pre-amp response, ion current, noise

5) Same treatment as real data

1) Electric field model

- 2) Drift of charges simulated
- 3) Energy response simulated
- 4) Pulses simulated: pre-amp response, ion current, noise
- 5) Same treatment as real data

Polya distribution for # of secondary pairs Modeled with Garfield++

~ 7000 secondary pairs / PE

- 1) Electric field model
- 2) Drift of charges simulated
- 3) Energy response simulated
- 4) Pulses simulated: pre-amp response, ion current, noise
- 5) Same treatment as real data

4000

Samples

4500

5000

1) Electric field model

2) Drift of charges simulated

3) Energy response simulated

4) Pulses simulated: pre-amp response, ion current, noise

5) Same treatment as real data

Real 150 eV_{ee} Event

- Am/Be neutron source
- 2.82 keV and 0.27 keV X-rays from gaseous ³⁷Ar

Agreement with simulation allows us to derive our WIMP sensitivity from simulated WIMPs

NEWS-G @ LSM

Physics Data

Target: Neon + 0.7% CH₄ @ 3.1 bars

Quality cuts: 20.1 % dead time

Exposure:

9.6 kg·days (34.1 live-days x 0.28 kg) 10

Trigger threshold: 35 eV_{ee} (~100% efficient at 150 eV_{ee})

> Analysis threshold: 150 eV_{ee} (~720 eV_{nr})

Sideband region used to determine # of expected events in preliminary ROI

<u>Data Analysis</u>

We use a Boosted Decision Tree (machine learning algorithm) Optimized cuts for 8 different WIMP masses

Trained with simulated WIMPs and background events

Mis-modeling of backgrounds would lead to non-optimal cuts (underestimating our sensitivity)

First results from NEWS-G @ LSM!

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018)

doi: 10.1016/j.astropartphys.2017.10.009

Looking forward...

Many improvements:

Lighter targets, larger exposure, pure materials 140cm Ø Low ²¹⁰Pb Cu Hydrogen Helium Neon

- 40 cm PE + Boron sheet - 22 cm VLA Pb (1 Bq/kg ²¹⁰Pb) - 3 cm archaeological lead

Better shielding

Deeper underground, \sim 4x lower μ flux

umbrella

multi-ball umbrella

CAD drawing of

lead shield

single ball

Thank you!

Queen's University Kingston – G Gerbier, P di Stefano, R Martin, T Noble, D. Durnford, G. Giroux, A Brossard, F Vazquez de Sola, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier

- Copper vessel and gas set-up specifications, calibration, project management
- Gas characterization, laser calibration, on smaller scale prototype
- Simulations/Data analysis

IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers) - I Giomataris, M Gros, C Nones, I Katsioulas,

- T. Papaevangelou, JP Bard, JP Mols, XF Navick,
- Sensor/rod (low activity, optimization with 2 electrodes)
- Electronics (low noise preamps, digitization, stream mode)
- DAQ/soft

LSM (Laboratoire Souterrain de Modane) / Université de Chambéry - F Piquemal, M Zampaolo, A DastgheibiFard

- Low activity archeological lead
- Coordination for lead/PE shielding and copper sphere

Thessaloniki University - I Savvidis, A Leisos, S Tzamarias, C Elefteriadis, L Anastasios

- Simulations, neutron calibration

- Studies on sensor

LPSC (Laboratoire de Physique Subatomique et Cosmologie), Grenoble - D Santos, JF Muraz, O Guillaudin

- Quenching factor measurements at low energy with ion beams
- Technical University Munich A Ulrich, T Dandl
- Gas properties, ionization and scintillation process in gaz
- Pacific National Northwest Lab E Hoppe, DM Asner, R Bunker
- Low activity measurements, Copper electroforming
- RMCC (Royal Military College Canada), Kingston D Kelly, E Corcoran
- ³⁷Ar source production, sample analysis
- SNOLAB, Sudbury P Gorel
- Calibration system/slow control
- University of Birmingham Kostas Nikolopoulos, P. Knight
- Simulation and R&D

Associated lab : TRIUMF - F Retiere

- Future R&D on light detection, sensor

Extra Slides

Effect of Different Targets

1 GeV WIMP, 1 kg.year, 100eV threshold

WIMP Recoil Spectrum 10⁰ 10-1 10⁻² #/(eV. kg. day)Nuclear Recoil 10⁻³ WIMP 10-4 from galactic halo $E_r \sim 1 \text{ keV}$ 10-5 10-6 10-7 10¹ 10² 10³ 10⁴ 10^{0} Recoil Energy (eV) dR $\frac{\rho_0 \sigma_0}{2m_\chi m_r^2} F^2 \left(E_r \right)$ dE_r v_{min}

Neon, 1 kg.year, 1pb, 1 GeV WIMP

Schnee, R. W. (2009). Introduction to Dark Matter Experiments. In Theoretical Advanced Study Institute in Elementary Particle Physics. Boulder, Colorado, USA.

Spherical Proportional Counter (SPC)

Low intrinsic capacitance \rightarrow Low noise \rightarrow Low energy threshold (10 - 40 eV_{ee})

$$C = \frac{4\pi\epsilon}{\left(\frac{1}{r_{sensor}} + \frac{1}{r_{vessel}}\right)} \approx 4\pi\epsilon r_{sensor} \approx 0.35 pF$$

Large gain from charge avalanche in high electric field

$$E(r) \propto \frac{1}{r^2}$$

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018)

doi: 10.1016/j.astropartphys.2017.10.009

Drift Parameters from MAGBOLTZ

Effect of Energy Resolution

Neon target, Gaussian smearing, 100 eV threshold

