Electroweak production of dijets in association with a Z boson in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector

Stephen Weber

February 17, 2018

Signal: Electroweak Zjj

EW Zjj includes all processes where there is a *t*-channel exchange of a W/Z boson and a l^+l^-jj final state

- VBF Z is also a probe for new physics via higher order corrections to the WWZ vertex, the triple gauge coupling
- The VBF component of EW production is of interest because of the similarity to VBF higgs production

Signal: What we see with the ATLAS detector

Background: Strongly produced Zjj

- *Zjj* events at the LHC are predominantly produced via a **strong interaction**
- Same *I*⁺*I*⁻*jj* final state as our EW signal but ~3000 times more likely

$$\sigma_{Strong} \approx 4.3 \, \mathrm{nb} = 4.3 \times 10^{-9} \, \mathrm{b}$$

$$\sigma_{\textit{EW}} \approx 1.5\,\mathrm{pb} = 1.5\times10^{-12}\,\mathrm{b}$$

• Strong Zjj events are more likely to have additional jets **between** the 2 main jets

Background: What we see with the ATLAS detector

Measurement: Differential cross section

- The Strong Zjj accounts for the vast majority of events
- Crucial to understand this process to measure the EW Zjj signal

Event requirements for the EW Zjj enhanced region

EW Zjj

Event requirements for the EW Zjj enhanced region

- 2) 2 Jets:
 - Jet 1: $p_T > 55$ GeV
 - Jet 2: *p*_T > 45 GeV

$$\boxed{\frac{N_{EW}}{N_{Strong} + N_{EW}} = 0.014}$$

EW Zjj

Event requirements for the EW Zjj enhanced region

- 3) Dijet invariant mass:
 - $m_{jj} > 250 \text{ GeV}$
- 4) Dijet Rapidity Gap:
 - $\Delta Y(j1, j2) > 2.0$

$$\frac{N_{EW}}{N_{Strong} + N_{EW}} = 0.032$$

Event requirements for the EW Zjj enhanced region

Event requirements for the EW Zjj enhanced region

Events/GeV • 7) No gap jets: ۵S Work in Progress √s = 13 TeV, 32.9 fb no jets in the rapidity gap $Z \rightarrow \mu \mu$ between the leading 2 jets - Data EW Zij Strong Zij 8) Z centrality: 10³ • $\xi_7 < 0.5$ 10² $\xi_Z = \frac{y_Z - \frac{1}{2}(y_{j1} + y_{j2})}{|y_{j1} - y_{j2}|}$ Data/MC 1.4 1.2 0.8 0.6 $\frac{N_{EW}}{N_{Strong} + N_{EW}} = 0.097$ 02 100 m_[GeV]

M_{jj} in the **Signal** region

MC simulation doesn't model the Strong Zjj component well

- Observe a mis-modeling of the Strong Zjj background
- Solution:
 - Define a **Control** region orthogonal to the **Signal** region
 - Control region suppresses EW Zjj component
 - Constrain the Strong Zjj background to the match the **Control** region

M_{jj} in the **Control** region

MC simulation doesn't model the Strong Zjj component well

• Invert the Z centrality cut:

• $\xi_Z < 0.5$

$$\xi_Z = \frac{y_Z - \frac{1}{2}(y_{j1} + y_{j2})}{|y_{j1} - y_{j2}|}$$

$$\frac{N_{EW}}{N_{Strong} + N_{EW}} = 0.020$$

Summary: Differential cross section measurement

- Looking at the full 2015-16 dataset (\sim 36 fb⁻¹)
- Goal is to measure the differential cross sections for the EW Zjj as a function of characteristic variables:
 - Invariant mass of the dijet system $ightarrow M_{jj}$
 - Jet multiplicity in the rapidity gap $ightarrow \textit{N}_{
 m jet}^{
 m gap}$
 - Z boson centrality $\rightarrow \xi_Z$
- General procedure for differential measurement
 - Fit Strong Zjj template in the control region
 - Extrapolate Strong Zjj template to the signal region
 - Fit the EW signal template by subtracting the Strong Zjj from the data in the signal region
- Systematic variations and Monte Carlo modeling uncertainties need to be well understood to extrapolate from Control to Signal regions.

Acknowledgements

University of Manchester

J. Crane, A. Pilkington **Carleton** A. Bellerive, C. Chhiv Chau, D. Gillberg

Questions?

3

メロト メポト メヨト メヨト

BACKUP

イロト イヨト イヨト イヨト

3

Signal: Electroweak *Zjj* other diagrams

EW Zjj includes all processes where there is a *t*-channel exchange of a W/Z boson and a l^+l^-jj final state

- The VBF component of EW production is of interest because of the similarity to VBF higgs production
- VBF Z is also a probe for new physics via higher order corrections to the WWZ vertex, the triple gauge coupling

Stephen Weber (Carleton)

Other backgrounds include:

• Semi-leptonic diboson decays (ZZ, WZ)

Have a Z boson but the leading jets come from a vector boson

Other backgrounds include:

• $t\overline{t}$, single top, multijet, WW and W+jets

These background have no Z boson, a lepton pair is misidentified as a Z

Dataset and MC samples

Data included in current studies

2016 Periods A-L (STDM3 Derivation) $\mathcal{L} = 33 \, fb^{-1}$

EW Zjj (Signal)

Z+jets (Dominant background, \sim 99%)

Sherpa (NLO for Z+0,1,2 partons, LO for 3,4)

mc15_13TeV.3641*.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV*.merge. DAOD_STDM3.e5299_s2726_r7772_r7676_p2949

Madgraph (LO for Z+0,1,2,3,4 partons)

mc15_13TeV.3631*.MGPy8EG_N30NLO_Zee_Ht*.DAOD_STDM3.e4866_s2726_r7772_r7676_p2669

Madgraph MG5 aMC@NLO FxFx (VBF filter)

- Samples have been submitted (EVTGEN only)
- https://its.cern.ch/jira/browse/ATLMCPROD-5368

MC samples (cont.)

Other background samples (${\sim}1\%$)

Semi-leptonic diboson decays (ZZ, WZ)

mc15_13TeV.3610*.Sherpa_CT10*.DAOD_STDM4*

tī

 mc15_13TeV.410000.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_nonallhad.merge. DAOD_STDM3.e3698_s2608_s2183_r7725_r7676_p2666

single top

mc15_13TeV.4100*.PowhegPythiaEvtGen_P2012*.DAOD_STDM3*

W+jets

mc15_13TeV.36110*.PowhegPythia8EvtGen_AZNLOCTEQ6L1*.DAOD_STDM3*

${\rm Z}{\rightarrow}\,\tau\tau$

 mc15_13TeV.361108.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Ztautau.merge. DAOD_STDM3.e3601_s2726_r7725_r7676_p2666

Object and Event Selection

Object	Electron Channel	Muon Channel				
Leptons	$p_T > 25 \text{ GeV}$	$p_T > 25 \text{ GeV}$				
	$ \eta < 1.37 \mid\mid 1.52 < \eta < 2.47$	$ \eta < 2.4$				
	Medium likelihood	Medium WP				
	Gradient Isolation	Gradient Isolation				
Jets	anti- $k_t R = 0.4$, EM+JES					
	Jet Cleaning: LooseBad					
	$p_T > 25 { m GeV} y_j {<} 4.4$					
	JVT $>$ 0.59 for p_T $<$ 60 GeV and $ \eta {<}2.4$					

Event Selection: VBF topology						
Dilepton pair	$81 < M_{II} < 101$ GeV, $p_t^{II} > 20$ GeV					
Dijet system	$p_T^{j1} > 55 ext{GeV} p_T^{j2} > 45 ext{GeV} \ M_{jj} > 500 ext{GeV} \Delta Y(j1,j2) > 2.0$					
System	$p_T^{ m balance} < 0.15$					

A gap-jet (gj) has rapidity between the leading two jets

$$p_T^{\text{balance}} = \frac{\vec{p}_T^{l1} + \vec{p}_T^{l2} + \vec{p}_T^{j1} + \vec{p}_T^{j2} + \vec{p}_T^{gj}}{|\vec{p}_T^{l1}| + |\vec{p}_T^{l2}| + |\vec{p}_T^{j1}| + |\vec{p}_T^{j2}| + |\vec{p}_T^{gj}|} \stackrel{\text{escale}}{=} \frac{\vec{p}_T^{l1} + \vec{p}_T^{l2}}{|\vec{p}_T^{l1}| + |\vec{p}_T^{l2}| + |\vec{p}_T^{gj}|} \stackrel{\text{escale}}{=} \frac{\vec{p}_T^{l1} + \vec{p}_T^{l2}}{|\vec{p}_T^{l1}| + |\vec{p}_T^{l2}| + |\vec{p}_T^{gj}|}$$

Stephen Weber (Carleton)

Strong Z+jets miss modeling

- Analysis challenge: Strong Z+jets samples significantly overestimate the cross section at high *m_{ij}*
 - The MG5 aMC@NLO FxFx samples (being submitted) have a large fraction of negative events
 - Virtual corrections are significant, how will this sample compare to data?
- To account for this affect we:
 - 1) Derive a data-driven reweighing function in control regions $ightarrow r_{
 m CR}$
 - 2) Apply the reweighing function to improve the strong Z modeling in the signal region

Applying the data driven constraint

Using constraint on Search region

- Looking at the ratio N_{CR}/N_{SR} for different strong Zjj generators
- $\bullet\,$ This is flat for $\textbf{CR}\,\,\textbf{C}\,\rightarrow\,$ implies consistent modeling
- We can constrain across Z centrality "boundary"

Cross section measurement challenges

Recall the fiducial cross section in bin *i*:

$$\sigma_{\mathrm{fid},i} = \frac{N_{\mathrm{SR},i}^{\mathrm{data}} - N_{\mathrm{SR},i}^{\mathrm{strong}} - N_{\mathrm{SR},i}^{\mathrm{non}-Z}}{C_i \mathcal{L}}$$

The term in red is the strong Zjj component:

$$N_{\mathrm{SR},i}^{\mathrm{strong}} = k \cdot r_{\mathrm{CR},i} \cdot N_{\mathrm{SR},i}^{\mathrm{strong}-\mathrm{MC}}$$

where our constraining function is:

$$r_{\mathrm{CR},i} = \frac{N_{\mathrm{CR},i}^{\mathrm{data}} - N_{\mathrm{CR},i}^{\mathrm{non}-Z}}{N_{\mathrm{CR},i}^{\mathrm{strong}-\mathrm{MC}}}$$

so the predicted yield in a signal region bin i is:

$$N_{\rm SR,i}^{\rm strong} = k \left(N_{\rm CR,i}^{\rm data} - N_{\rm CR,i}^{\rm non-Z} \right) \frac{N_{\rm SR,i}^{\rm strong-MC}}{N_{\rm CR,i}^{\rm strong-MC}}$$

Control to signal ratio

We study the ratio term N_{CR}/N_{SR} for MC modeling and systematic variations

Stephen Weber (Carleton)

Systematic variations: JES and JER

Procedure:

- Perform analysis selection with nominal and systematically varied jets
- Fit varied/nominal distributions as a function of characteristic variables $(M_{jj}, \Delta Y_{jj}, N_{\rm jet}^{\rm gap} \text{ and } \xi_Z)$ in a particular region of phase space
- Construct a ratio of two such distributions

Systematic variations: JES and JER (continued)

Combined plots of dominant jet systematics, ratio of CR C to Search region

If this so-called **double ratio** of control regions is flat the background template can be safely extrapolated from one region to another without a systematic shift

Systematic variations: JES and JER (continued)

Table summarizing the 6 dominant JES/JER systematics contribution as a function of M_{jj}

Bin Low-Edge [GeV]	250.0	500.0	750.0	1000.0	1500.0	2250.0	3000.0	5000.0
JES effNP1	1.22%	-0.21%	-0.80%	-0.81%	-0.61%	-0.38%	-0.30%	-0.26%
JES effNP2	1.40%	-0.19%	0.09%	0.64%	1.53%	2.54%	3.63%	5.17%
JES etaModelling	2.77%	-1.02%	-1.45%	-1.49%	-1.49%	-1.49%	-1.49%	-1.49%
JES FlavourComp	3.00%	-1.16%	-1.84%	-1.47%	-0.92%	-0.53%	-0.39%	-0.31%
JER xcalib	2.14%	0.00%	-0.24%	-0.26%	-0.26%	-0.26%	-0.26%	-0.26%
JER effNP1	3.36%	0.18%	-0.18%	-0.21%	-0.21%	-0.21%	-0.21%	-0.21%
(Total JES+JER)	6.00%	1.58%	2.50%	2.36%	2.43%	3.03%	3.97%	5.41%

CR C / Search region

- The double ratio is relatively flat
- We can extrapolate the background template from this control region to the search region