Quasi-Elastic Neutrino Reactions on Carbon and Lead Nuclei

Mohammad Hedayatipour
University of Alberta

Outline

- Description of the reaction model
- Study the effects of strange quarks on the reaction
- Comparison the results of the model with data
- Prediction of the model for reaction on Lead targets

The cross section for exclusive neutrino-nucleon production is:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d \Omega_{\nu} d \Omega_{N} d E_{N}} & =\frac{G_{F}^{2} m_{N} c^{2} p_{N} c k_{f}^{2} c^{2}}{8(2 \pi)^{5} \hbar c} \\
& \times \sum_{J_{B} M_{B} M} \frac{\mathcal{S}_{J_{i} J_{f}}\left(J_{B}\right)}{2 J_{B}+1}\left|\mathcal{L}^{\alpha} N_{\alpha M M_{B}}\right|^{2} .
\end{aligned}
$$

$\mathcal{S}_{J_{i} J_{f}}\left(J_{B}\right)$: Spectroscopic factor

Lepton and nuclear currents are:

$$
\begin{aligned}
\mathcal{L}^{\alpha} & =\bar{\nu}\left(k_{f}\right)\left(\gamma^{\alpha}-\gamma^{\alpha} \gamma^{5}\right) \nu\left(k_{i}\right) \\
N_{\alpha M M_{B}} & =\int d^{3} x \bar{\psi}_{M}\left(k_{p}, x\right) j_{\alpha} \psi_{J_{B} M_{B}}(x) e^{\mathbf{q} \cdot \mathbf{x}}
\end{aligned}
$$

The weak current is:

$$
\begin{aligned}
j^{\mu}= & F_{1}^{V}\left(Q^{2}\right) \gamma^{\mu}+i \frac{\kappa}{2 M} F_{2}^{V}\left(Q^{2}\right) \sigma^{\mu \nu} q_{\nu} \\
& -G_{A}\left(Q^{2}\right) \gamma^{\mu} \gamma^{5}
\end{aligned}
$$

Weak isovector Dirac and Pauli form factors are:

$$
\begin{array}{r}
F_{i}^{V, p(n)}=\left(\frac{1}{2}-2 \sin ^{2} \theta_{W}\right) F_{i}^{p(n)}-\frac{1}{2} F_{i}^{n(p)}-\frac{1}{2} F_{i}^{s}, \\
i
\end{array}=1,2, ~ \$
$$

$\sin ^{2} \theta_{W} \simeq 0.23143$,

$$
\begin{aligned}
F_{1}^{s}\left(Q^{2}\right) & =\frac{\left(\rho^{s}+\mu^{s}\right) \tau}{(1+\tau)\left(1+Q^{2} / M_{V}^{2}\right)^{2}} \\
F_{2}^{s}\left(Q^{2}\right) & =\frac{\left(\mu^{s}-\tau \rho^{s}\right)}{(1+\tau)\left(1+Q^{2} / M_{V}^{2}\right)^{2}}
\end{aligned}
$$

$$
\tau=Q^{2} /\left(4 m_{N}^{2}\right), \quad M_{V}=0.843 \mathrm{GeV}
$$

Axial form factor:
$G_{A}\left(Q^{2}\right)=\frac{1}{2}\left(\tau_{3} g_{A}-g_{A}^{s}\right) G\left(Q^{2}\right)$,
$g_{A} \simeq 1.26, G=\left(1+Q^{2} / M_{A}^{2}\right)^{-2}$,
$M_{A}=(1.026 \pm 0.021) \mathrm{GeV}$, and $\tau_{3}=+1(-1)$

Flux-averaged cross section:
$\left\langle\frac{d \sigma}{d Q^{2}}\right\rangle=\int \phi_{\nu}\left(E_{\nu}\right) \frac{d \sigma}{d Q^{2}}\left(E_{\nu}\right) d E_{\nu}$,
$Q^{2}=2 m_{N} T_{N}, \phi_{\nu}\left(E_{\nu}\right):$ normalized neutrino flux

$$
\begin{aligned}
\frac{d \sigma_{\nu N \rightarrow \nu N}}{d Q^{2}} & =\frac{1}{7} C_{\nu p, H} \frac{d \sigma_{\nu p \rightarrow \nu p, H}}{d Q^{2}} \\
& +\frac{3}{7} C_{\nu p, C} \frac{d \sigma_{\nu p \rightarrow \nu p, C}}{d Q^{2}}+\frac{3}{7} C_{\nu n, C} \frac{d \sigma_{\nu n \rightarrow \nu n, C}}{d Q^{2}},
\end{aligned}
$$

$\left(v N, v^{\prime} \mathrm{N}\right)$ Reaction

A. A. Aguilar-Arevalo et al (MiniBooNE Collaboration), Phys. Rev. D 82 (2010)
${ }^{208} \mathrm{~Pb}\left(v, v^{\prime} n\right) \mathrm{E}_{\mathrm{v}}=40 \mathrm{MeV}$

Fluence for each neutrino flavour is obtained from:

$$
\frac{d F_{\nu}(E)}{d E}=\left(2.35 \times 10^{13}\right) \frac{\mathcal{E}_{\nu}}{d^{2}} \frac{E^{3}}{\left\langle E_{\nu}\right\rangle^{5}} \exp \left(-\frac{4 E}{\left\langle E_{\nu}\right\rangle}\right)
$$

The total number of events per atom in the target is :
$\left\langle n_{\text {event }}\right\rangle=\int d E \sigma(E) \frac{d F_{\nu}(E)}{d E}$
B. Dasgupta, J.F. Beacom, Phys. Rev. D 83 (2011) 113006

For a supernova ($5 \times 10^{52} \mathrm{erg}$ emitting energy and at a distance 10 kpc) about 30 neutrons will be produced in HALO_1 where 0.54 is via neutral current quasi-free reactions.
J. Engel, G.C. McLaughlin, C. Volpe, Phys. Rev. D 67 (2003) 013005

Summary

- g_{A}^{s} has the most effect on the cross section.
- ρ^{s} has no effect on (v, v 'p) cross section and small effect on (v, v 'n) cross section.
- $\mathrm{R}_{\mathrm{p} / \mathrm{n}}$ is grouped with different g_{A}^{s} values.
- PW calculations reproduced the MiniBooNE data, however DW lies below the data for $\mathrm{Q}^{2}<0.5 \mathrm{GeV}^{2}$.
- In a standard supernova about 30 neutrons will be produced in HALO_1 where 0.54 is via neutral current quasi-free reactions
Collaborators: James Finlay, Soheyl Massoudi, Charles Nokes and Marc de Montigny Reference: Journal of Physics G, Vol.45, No.2(2017)025201

E_{ν}	$\sigma_{P W}$	$\sigma_{1 n}($ Ref. [67])
10	0.00	0.02
15	0.411	0.6
20	2.27	2.0
25	7.05	4.6
30	16.3	8.7
35	30.9	14.4
40	52.2	21.5
45	81.3	29.7
50	119	38.6
55	167	47.9
60	224	57.4

Table 1: Total cross sections (in units of $10^{-15} \mathrm{fm}^{2}$) of the neutral-current neutrino quasi-elastic scattering on ${ }^{208} \mathrm{~Pb}$ with neutron knockout for various energies in MeV of the incoming neutrino. $\sigma_{P W}$ is computed by using the relativistic plane-wave impulse approximation, and the last column shows the results for $\nu \rightarrow \nu$ from Table 1 in Ref.[67].

$$
g_{A}^{s}=-0.08 \pm 0.05
$$

$$
\rho^{s}=-0.10 \pm 0.08 \pm 0.02 \text { and } \mu^{s}=0.056 \pm 0.023 \pm 0.017
$$

TABLE I. Neutrino cross sections in units of $10^{-40} \mathrm{~cm}^{2}$ as a function of energy (MeV) for emission of one and two neutrons, and summed over all decay channels, obtained with the Skyrme force SIII. We include the charged-current channel for neutrinos, and the neutral-current channel for both neutrinos and antineutrinos.

E_{ν}	$\nu_{e} \rightarrow e$			$\nu \rightarrow \nu$			$\bar{\nu} \rightarrow \bar{\nu}$		
	1 n	2 n	total	1 n	2 n	total	1 n	2 n	total
5			0.39×10^{-7}			0.67×10^{-11}			0.66×10^{-11}
10	0.29×10^{-11}		0.09	0.002		0.007	0.002		0.007
15	0.91		1.54	0.06		0.08	0.05		0.08
20	4.96		6.51	0.20		0.27	0.18		0.24
25	14.66	0.45	17.63	0.46	0.03	0.62	0.40	0.03	0.54
30	25.05	3.15	32.22	0.87	0.15	1.22	0.73	0.13	1.04
35	29.27	10.85	45.37	1.44	0.42	2.15	1.18	0.36	1.79
40	33.56	23.68	64.10	2.15	0.93	3.48	1.73	0.76	2.82
45	37.91	38.97	85.33	2.97	1.74	5.25	2.34	1.39	4.17
50	42.54	53.79	106.16	3.86	2.93	7.50	2.99	2.26	5.82
55	47.17	71.63	130.09	4.79	4.56	10.24	3.65	3.42	7.78
60	52.02	90.05	154.64	5.74	6.63	13.50	4.31	4.85	10.04
65	56.31	108.73	178.75	6.71	9.17	17.25	4.97	6.54	12.57
70	60.39	129.14	204.17	7.69	12.17	21.49	5.62	8.47	15.34
75	64.03	150.40	229.88	8.67	15.59	26.14	6.25	10.62	18.31
80	67.04	170.75	253.92	9.65	19.39	31.16	6.86	12.94	21.42
85	69.69	191.16	277.58	10.58	23.51	36.43	7.44	15.39	24.61
90	71.95	211.73	300.95	11.45	27.90	41.88	7.97	17.93	27.82
95	73.91	231.25	323.03	12.23	32.47	47.39	8.45	20.51	31.00

$$
{ }^{3} \mathrm{He}+n \rightarrow p+t+764 \mathrm{keV}
$$

which produces a back-to-back proton-triton pair, with the proton carrying 573 keV of kinetic energy and the triton having 191 keV .

