FROM T2K TO HYPER-K: STATUS AND PROSPECTS FOR LONG BASELINE NEUTRINO PHYSICS IN JAPAN

Mark Hartz Kavli IPMU, the University of Tokyo & TRIUMF WNPPC 2018, Mont Tremblant, Feb. 18, 2018

PMU PRIVE

NEUTRINOS IN THE STANDARD MODEL

- Neutrinos:
 - Electrically neutral
 - ► Interact via Z, W bosons
 - 3 flavors, each associated with charged lepton
 - ► Very small mass, but not 0
 - Indicates physics beyond the standard model

Standard Model of Elementary Particles

.

ed and

Neutrinos are produced and interact via weak force in states of definite flavor

NEUTRINO FLAVOR AND MASS

 $\alpha = e, \mu, \tau$

 $|\mathbf{v}_{\alpha}\rangle = \sum U_{\alpha}^{*}$

- Neutrinos propagate as states of definite mass.
- Flavor states are a linear superposition of mass states
- ► Unitary matrix *U* relates the flavor and mass states
- > The relative phase of propagation depends on $\Delta m_{ji}^2 = m_j^2 m_i^2$

Mass states

NEUTRINO MIXING & OSCILLATIONS

Neutrino mass and flavor states mix according to unitary matrix:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s^{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \\ \end{pmatrix}$$

Accessible through neutrino oscillations $(s_{12} = sin\theta_{12}, etc.)$

Majorana phases if neutrinos are Majorana particles

1

 δ , α_{21} and α_{31} introduce new sources of CP violation

NEUTRINO MIXING & OSCILLATIONS

Neutrino mass and flavor states mix according to unitary matrix:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s^{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ 0 & 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$

Accessible through neutrino oscillations $(s_{12} = sin\theta_{12}, etc.)$ Majorana phases if neutrinos are Majorana particles

1

 δ , α_{21} and α_{31} introduce new sources of CP violation

The flavor content of neutrino states oscillate as they traverse matter or vacuum:

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E} \right)$$

+
$$2 \sum_{i>j} \operatorname{Im} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E} \right)$$

Dependence on mass squared differences of mass states, distance and energy

Oscillations from flavor α to β in vacuum

STATE OF OSCILLATION PARAMETER MEASUREMENTS

Fractional Error

- ► Mixing angles:
 - ➤ Measured with ~5% precision
 - ► θ_{23} is consistent with 45°
- ► CP violation:
 - ► Weak global preference for δ_{cp} near $3\pi/2$ (- $\pi/2$)

Whether the m₃ state is heaviest (normal ordering) or lightest (inverted ordering) is still undetermined

WHY IS CP VIOLATION IMPORTANT?

- Neutrino oscillations introduce a potential new source of CP violation
- ► Recall Sakharov's rules for explaining the baryogenesis:

Baryon number violation.

CP-symmetry violation.

Interactions out of thermal equilibrium.

- Observed CP violation in the quark sector is not enough
- Leptogenesis is possible (Fukugita & Yanagida, Phys. Lett. B 174, 45-47, 1986):
 - ► First produce $L \neq 0$ (lepton number violation)
 - ► Non-perturbative processes convert $L \neq 0$ to $B \neq 0$

A LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT

THE T2K EXPERIMENT

ND280 Near Detector

Generate beam of 99% muon neutrinos

THE T2K EXPERIMENT

ND280 Near Detector

Muon (anti)neutrino survival: $P_{\mu \to \mu} = 1 - \left[\sin^2 2\theta_{23} - \sin^2 \theta_{23} \cos 2\theta_{23} \sin^2 2\theta_{13} \right] \sin^2 \left[\frac{\Delta m_{32}^2 L}{4E_{\nu}} \right] + \dots$

Generate beam of 99% muon neutrinos

Electron (anti)neutrino appearance:

Discovery of $v_e \rightarrow v_{\mu}$ transition Phys.Rev.Lett. 112 (2014) 061802

$$P_{\mu \to e} = \overline{\sin^2 \theta_{23} \sin^2 2 \theta_{13}} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \right) = \frac{\sin 2 \theta_{12} \sin 2 \theta_{23}}{2 \sin \theta_{13}} \sin^2 2 \theta_{13} \sin \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}} \right) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \right) \sin \delta_{CP} + \dots$$

sign flips for antineutrinos

The T2K Collaboration

Italy INFN Canada	N, U. Bari	nembers, 64 Institutes	, 12 countries	
Canada INFN	N, U. Bari			
TRIUMFINFNU. B. ColumbiaINFNU. ReginaINFNU. ReginaJapaU. TorontoICRFU. VictoriaICRFU. WinnipegKavli	N, U. Napoli N, U. Padova N, U. Roma N R Kamioka R RCCN i IPMU	Poland IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroclaw U.	Switzerland ETH Zurich U. Bern U. Geneva United Kingdom Imperial C. London	USA Boston U. Colorado S. U. Duke U. Louisiana State U. Michigan S.U. Stony Brook U.
York U. KEK Kobe France Kyote CEA Saclay Miya LLR E. Poly. Okay LPNHE Paris Osak Toky Germany Toky Aachen U. To	e U. o U. o U. gi U. Edu. vama U. vama U. a City U. o Institute Tech o Metropolitan U. okyo	Russia INR Spain IFAE, Barcelona IFIC, Valencia U. Autonoma Madrid	Lancaster U. Oxford U. Queen Mary U. L. Royal Holloway U.L. STFC/Daresbury STFC/RAL U. Liverpool U. Sheffield U. Warwick	U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington Vietnam IFIRSE IOP, VAST

OVERVIEW OF T2K EXPERIMENT

NEUTRINO AND ANTINEUTRINO BEAMS

Choose between neutrinos and antineutrinos by controlling polarity of horns

- Only horn polarity flips! Beam, target and detector still made of matter.
 - ► Expect ~4 times larger neutrino event rate even if CP is conserved
 - ► Must be accounted for in the analysis

DETECTING NEUTRINOS

- Detect neutrinos through the charged-current interaction
 - Energetic muon or electron in final state can be detected
 - Final state nucleon often undetectable

Approximation: scattering on single nucleon bound in nuclear potential

Reality: nuclear effects such as scattering on pairs of nucleons have a significant impact on the interaction cross section

Difficult model → source of systematic errors

SUPER-KAMIOKANDE

Ikenoyama near Kamioka

- 50 kton water-Cherenkov detector
- ~11,000 20" PMTs for inner detector (ID) (40% photo coverage)
- ~2,000 8" PMTs for outer detector (OD): veto cosmic muons, radioactivity, exiting particles
- Charged particles above Cherenkov threshold produce Cherenkov light detected by the PMTs

SIGNAL CHANNELS AT SUPER-K

e

р

Electron neutrino appearance signal:

W+

 v_e

n

Muon neutrino survival signal:

Detected muon produces a sharp ring

Detected electron

produces a shower:

"fuzzy" ring

SK MC

NEAR DETECTOR - ND280

- ► Detect neutrinos before they oscillate in the ND280 off-axis near detector
 - Place constraint on expected event rate at far detector
- ► Detector located in 0.2 T magnetic field

Key components:

- Fine-Grained Detectors (FGD)
 - Scintillator bars and water targets (FGD2)
 - ► Interaction mass and tracking
- Time Projection Chambers (TPC)

► momentum and dE/dx measurements

 Construction and operation by: TRIUMF, UBC, U. Vic, Regina, U. Winnipeg

T2K RESULTS

T2K DATA COLLECTION HISTORY

Accumulated 14.7x10²⁰ protons-on-target (POT) in neutrino mode and
 7.6x10²⁰ POT in antineutrino mode (additional antineutrino data not shown here)

- ► 29% of the approved T2K POT
- 7.5x10²⁰ neutrino mode, 7.5x10²⁰ antineutrino mode for published results
 - ▶ Phys. Rev. Lett. 118 (2017) no.15, 151801 PRL Editor's Suggestion
- Accelerator has achieved stable operation with 470 kW beam power

CONSTRAINT FROM THE NEAR DETECTOR DATA

TPC1

TPC2

TPC3

PREDICTED AND OBSERVED EVENT RATES AT SK

		Observed			
Sample	δ _{cp} =-π/2	$\delta_{cp}=0$	$\delta_{cp} = \pi/2$	$\delta_{cp} = \pi$	Rates
CCQE 1-Ring e-like FHC	73.5	61.5	49.9	62.0	74
$CC1\pi$ 1-Ring e-like FHC	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like RHC	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ -like FHC	267.8	267.4	267.7	268.2	240
CCQE 1-Ring μ -like RHC	63.1	62.9	63.1	63.1	68

- The number of observed events are largely in line with the predictions after oscillations
 - > The e-like samples have rates most consistent with the $\delta_{cp} = -\pi/2$ hypothesis
- > The observed μ -like rate in neutrino mode is lower than prediction
 - Consistent within statistical and systematic errors

SYSTEMATIC ERRORS

	% Errors on Predicted Event Rates, Osc. Parameter Set A						
	1R µ-	Like	1R e-Like				
Error Source	FHC RHC FHC RHC FHC CC1				FHC CC1π	FHC/RHC	
SK Detector	1.86	1.51	3.03	4.22	16.69	1.60	
SK FSI+SI+PN	2.20	1.98	3.01	2.31	11.43	1.57	
ND280 const. flux & xsec	3.22	2.72	3.22	2.88	4.05	2.50	
$\sigma(v_e)/\sigma(v_\mu)$, $\sigma(\overline{v}_e)/\sigma(\overline{v}_\mu)$	0.00	0.00	2.63	1.46	2.62	3.03	
ΝC1γ	0.00	0.00	1.08	2.59	0.33	1.49	
NC Other	0.25	0.25	0.14	0.33	0.98	0.18	
Total Systematic Error	4.40	3.76	6.10	6.51	20.94	4.77	

Systematic errors arise in the neutrino flux, neutrino interaction and detector response modeling

► Errors of ~6% for the electron (anti)neutrino appearance channels

OSCILLATION PARAMETER SENSITIVITIES (2017)

Without the reactor experiment constraint on $\sin^2 2\theta_{13}$

MEASUREMENT OF \delta_{cn}

-1.83 radians in Normal Hierarchy Best fit point:

The 1σ CL confidence interval: Normal hierarchy: [-2.49, -1.23] radians

The 2σ CL confidence interval:

Normal hierarchy: [-2.98, -0.60] radians Inverted hierarchy: [-1.54, -1.19] radians CP conserving values $(0,\pi)$ fall outside of the 2σ CL intervals

MEASURED CONSTRAINT VS. SENSITIVITY

- Data constraint on δ_{cp} is stronger than the average sensitivity
 - ► Is it reasonable?
- Run many toy experiments with statistical and systematic fluctuations
 - ► $\delta_{cp} = -\pi/2$, NH
- Data constraint falls within range for 95.45% of experiments for most δ_{cp} points
- ► 30% of experiments exclude δ_{cp} =0 at 2 σ
- ► 25% of experiments exclude $\delta_{cp} = \pi$ at 2σ

ATMOSPHERIC PARAMETERS PARAMETERS

THE FUTURE

T2K-II: EXTENDED T2K OPERATION

- ► T2K originally approved for 7.8×10²¹ POT
- Proposal to extend T2K operation to 2026 and collect 20.0×10²¹ POT
- Analysis and operation improvements to achieve another 50% improvement in experimental sensitivity
 - ~30% already achieved!

			Signal	Signal	Beam CC	Beam CC	0.
	True δ_{CP}	Total	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \bar{\nu}_{\mu} $	NC
ν -mode	0	454.6	346.3	3.8	72.2	1.8	30.5
ν_e sample	$-\pi/2$	545.6	438.5	2.7	72.2	1.8	30.5
$\bar{\nu}$ -mode	0	129.2	16.1	71.0	28.4	0.4	13.3
$\bar{\nu}_e$ sample	$-\pi/2$	111.8	19.2	50.5	28.4	0.4	13.3

		Beam CC	Beam CC	Beam CC	$ u_{\mu} \rightarrow \nu_{e} + $	
	Total	$ u_{\mu}$	$ar{ u}_{\mu}$	$\nu_e + \bar{\nu}_e$	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$	NC
ν -mode ν_{μ} sample	2612.2	2290.5	150.0	1.6	7.0	163.1
$\bar{\nu}$ -mode $\bar{\nu}_{\mu}$ sample	1217.5	482.1	672.5	0.6	1.0	61.3

T2K-II SENSITIVITY

- If δ_{cp} is near current best fit, potential for a 3σ discovery of CP violation in T2K-II
 - The size of systematic errors has a large impact on the experimental sensitivity (dashed vs. solid lines) - we expect systematic uncertainties to improve
- ► Significant reduction of $\sin^2\theta_{23}$ and Δm^2_{32} intervals is also possible

HYPER-K

<u>Hyper-K Detector:</u>

60 m tall x 74 m diameter tank

2 tanks with a staging approach (second tank6 years later)

40,000 50cm ϕ PMTs \rightarrow 40% photo-coverage

260 kton mass (187 kton fiducial volume is ~8x larger than Super-K)

<u>Hyper-K Physics:</u> Long baseline neutrinos Atmospheric neutrinos Nucleon decay searches Supernova neutrinos

Solar neutrinos

HYPER-K EVENT RATES & SPECTRA

Electron (anti)neutrino candidates

δ _{cp} =0	Signal	Wrong-sign appearance	$\mathbf{CC} \ \nu_{\mu_{I}} \ \overline{\nu}_{\mu}$	Intrinsic v_{e}, \overline{v}_{e}	NC
v beam	2300	21	10	362	188
\overline{v} beam	1656	289	6	444	274

Statistical errors of 2%!!!

Muon (anti)neutrino candidates

	CCQE	CC non-QE	NC	Total
v beam	8947	4444	672	14110
\overline{v} beam	12317	6040	844	19214

HYPER-K EVENT RATES & SPECTRA

Muon (anti)neutrino candidates

	CCQE	CC non-QE	NC	Total
v beam	8947	4444	672	14110
\overline{v} beam	12317	6040	844	19214

HYPER-K EVENT RATES & SPECTRA

HYPER-K CPV SENSITIVITIES

JU

THE E61 EXPERIMENT

- E61 (NuPRISM): proposed intermediate detector for Hyper-K and later part of T2K experiment
- ► 1 kilo-ton scale water Cherenkov detector
- ▶ ~ 1 km from the neutrino source
- ► Instrumented part of detector moved in \sim 50 shaft

Address uncertainties on neutrino-nucleus scattering modeling for Hyper-K

APPLICATION OFF-AXIS ANGLE MEASUREMENTS

MULTI-PMTS IN E61

- Simulation studies show that the detector performance is improved with smaller photo-multiplier tubes with better timing resolution
- Building on the KM3NeT approach, deploy multi-PMT modules with 3 inch PMTs
- ► 19 PMTs view the inner detector
- ► 7 or fewer PMTs view the outer detector
- Modules contain high voltage generation and readout electronics

MULTI-PMT MODULE DESIGN

Canadian institutes involved in the development of most components for the mPMT

- With new data and analysis T2K has updated oscillation parameter estimates
 - CP conserving values of δ_{cp} are excluded at 2σ in both confidence intervals and credible intervals
- T2K proposes an extended program to collect 20×10²¹ POT and achieve 3σ sensitivity to exclude CP conserving values for favorable true values of δ_{cp}
- Hyper-K will see the construction of a new detector 8 times larger than Super-K
- Systematic error reduction for Hyper-K is critical. E61 (NuPRISM) aimed at reduce systematic errors on neutrino interaction modeling.

THANK YOU!

OBSERVED SPECTRA

COMPARISON TO BAYESIAN CREDIBLE INTERVALS

- Produce posterior probability distributions and credible intervals in Bayesian analysis
- > Two choices for priors: flat in δ_{cp} and flat in $sin(\delta_{cp})$

The 2 σ confidence interval: Flat prior on δ_{cp} : [-3.02, -0.44] radians Flat prior on $\sin(\delta_{cp})$: [-3.04, -0.10] radians

CP conserving values $(0,\pi)$ fall outside of the 2σ intervals

OCTANT AND HIERARCHY PREFERENCES

- Bayesian analysis: natural way to infer data preference for θ₂₃ octant or mass hierarchy
- Assume equal prior probability for both octant and hierarchy hypotheses
- Fraction of steps from Markov Chain in each octant/hierarchy is posterior probability for the octant/hierarchy hypothesis

Posterior probabilities (with reactor constraint)

	$\sin^2 \Theta_{23} < 0.5$	$sin^2 \Theta_{23} > 0.5$	Sum
NH ($\Delta m^2_{32} > 0$)	0.193	0.674	0.868
IH ($\Delta m_{32}^2 < 0$)	0.026	0.106	0.132
Sum	0.219	0.781	

- ► T2K data prefers the normal hierarchy and upper octant
 - ► No conclusive statement yet

BINNED LIKELIHOOD

Define a binned likelihood for our data:

$$\begin{split} -ln(L) &= \sum_{i}^{N_{SKbins}} N_{i}^{SK}(\vec{o},\vec{p}) - M_{i}^{SK} + M_{i}^{SK} ln[M_{i}^{SK}/N^{SK}(\vec{o},\vec{p})] \\ &+ \frac{1}{2} \sum_{i}^{N_{o}^{const}} \sum_{j}^{N_{o}^{const}} \Delta o_{i}(V_{ij}^{o})^{-1} \Delta o_{j} + \frac{1}{2} \sum_{i}^{N_{p}} \sum_{j}^{N_{p}} \Delta p_{i}(V_{ij}^{p})^{-1} \Delta p_{j}. \end{split}$$

 \blacktriangleright M^{SK}_i : observed number of events in the ith bin (all SK samples)

- \blacktriangleright **N**^{SK}_i : is the predicted number of events in the ith bin
 - ► Depends on oscillation (o) and systematic (p) parameters
 - ► Oscillation and systematic parameters can have prior constraints
- Marginal likelihood formed by integrating out the dependence on all p and o that are not being plotted

FREQUENTIST VS. BAYESIAN ANALYSES

- ► Calculate intervals for parameters using two statistical approaches
- ➤ Scan the Δ[-2ln(L_{marg})]=Δχ² surface for oscillation parameters and construct frequentist confidence intervals
 - ► For the 1-D δ_{cp} interval, perform a Feldman-Cousins construction to calculate the critical $\Delta \chi^2$ for given confidence levels

- Perform a Markov Chain Monte Carlo (MCMC) where step acceptance is based on the likelihood. Produce Bayesian credible intervals
 - MCMC method uses a likelihood that includes the near detector data

Evaluate sensitivity to oscillation parameters: run fits on Monte Carlo sets generated with no systematic or statistical throws

.

► Generated at two sets of oscillation parameter values:

Parameter	Set A value	Set B value	
$\sin^2 \theta_{12}$	0.304	0.304	
$\sin^2 \theta_{23}$	0.528	0.45	Near-maximal in A, non-maximal in B
$\sin^2 \theta_{13}$	0.0217	0.0217	
Δm^2_{21}	$7.53 imes 10^{-5} \ \mathrm{eV^2}$	$7.53 imes 10^{-5} \ { m eV^2}$	
Δm^2_{32}	$2.509 \times 10^{-3} \ {\rm eV^2}$	$2.509 \times 10^{-3} \text{ eV}^2$	
δ_{CP}	-1.601	0	CP violation in A, CP conservation in B

FITQUN RECONSTRUCTION ALGORITHM

- Previous T2K analyses have used the event reconstruction algorithm APFit
- For this result, event reconstruction at Super-K updated to use the fiTQun algorithm
- ► fiTQun uses a charge and time likelihood for a given ring(s) hypotheses
 - ► Maximizes likelihood for each event
 - Complete charge and time information in the likelihood leads to improved event reconstruction
- fiTQun previously used in T2K analyses for the rejection of π⁰ from electron neutrino candidates

THE FIVE SAMPLES

Using the reconstructed fiTQun quantities, five samples are selected:

Neutrino Mode (forward horn current FHC):

- (CCQE) 1 Muon-like Ring, ≤ 1 decay electron/
- (CCQE) 1 Electron-like Ring, 0 decay electrons,
- (CC1 π) 1 Electron-like Ring, 1 decay electron

Antineutrino Mode (reverse horn current RHC): (CCQE) 1 Muon-like Ring, ≤1 decay electron (CCQE) 1 Electron-like Ring, 0 decay electrons

No antineutrino mode CC1 π sample due to π^{-} absorption

 $\mathbf{v}_e(\bar{\mathbf{v}}_e) + N \rightarrow e^-(e^+) + X$

 $e^{-}(e^{+})+\overline{\mathbf{v}}_{e}(\mathbf{v}_{e})$

 $\nu_{\mu}(\bar{\mathbf{v}}_{\mu}) + N \rightarrow \mu^{-}(\mu^{+}) + X$

$$v_e + N \rightarrow e^- + \pi^+ + X$$

 $\downarrow_{\mu^+} + v_{\mu}$

EXPANSION OF THE FIDUCIAL VOLUME

- APFit based fiducial volume: reconstructed vertex
 2 m from the detector wall
- ► With fiTQun, fiducial volume cut is re-optimized
 - ► Cut on two variables:
 - Distance of vertex from wall (Wall)
 - Minimum distance to exclude external backgrounds
 - Distance to the wall along the particle trajectory (Towall)
 - Larger Towall = finer sampling of ring = better reconstruction
 - Optimize cuts accounting for statistical and systematic errors

OPTIMIZATION OF FIDUCIAL VOLUME CUTS

- Systematic parameters evaluated in a fit to atmospheric neutrino and cosmic muon control samples
- For each of the 5 samples, position of the Towall and Wall cuts selected by maximizing the sensitivity metric

Sample	Towall Cut	Wall Cut
CCQE 1-Ring e-like FHC	170 cm	80 cm
CCQE 1-Ring μ -like FHC	250 cm	50 cm
$CC1\pi$ 1-Ring e-like FHC	270 cm	50 cm
CCQE 1-Ring e-like RHC	170 cm	80 cm
CCQE 1-Ring μ -like RHC	250 cm	50 cm

CUT PROGRESSION FOR CCQE 1-RING E-LIKE

IMPROVEMENTS FROM APFIT TO FITQUN

	fiTQun	Selection	APFit Selection		
Sample	Candidates	Purity	Candidates	Purity	
CCQE 1-Ring e-like FHC	69.5	81.2%	56.5	81.4%	
CCQE 1-Ring μ -like FHC	261.6	79.7 %	268.7	68. 1%	
$CC1\pi$ 1-Ring e-like FHC	6.9	78.8 %	5.6	72.0%	
CCQE 1-Ring e-like RHC	7.6	62.0%	6.1	63.7%	
CCQE 1-Ring μ -like RHC	62.0	79.7 %	65.4	70.5%	

CCQE 1-Ring e-like samples: efficiency increases (due to new fiducial cuts) while purity remains the same

- ► CCQE 1-Ring µ-like samples: improvement in signal efficiency and purity
 - ► Reduction of NCπ and CCπ backgrounds
- \blacktriangleright CC1 π 1-Ring e-like: improvement in signal efficiency and purity
 - Improved PID = less muon ring contamination

IMPROVEMENTS FROM APFIT TO FITQUN

		fiTQun Selection		APFit Se	lectior	ו
Sample		Candidates	Purity	Candidates	Purity	
CCQE 1-	Ring e-like FHC	69.5	81.2%	56.5	81.4%	
CCQE 1	Ding like EUC	761 6	70 7%	260 7	۷.	. 1%
CC1π 1-	¹ With new fiTQun reconstruction and CC1π e-like sample, ¹ significant statistical improvement for same beam				.0%	
CCQE 1					.7%	
CCQE 1	exposure since last summer:					.5%
CCQI cuts)	30% increase for neutrino mode e-like selection 20% increase for antineutrino mode e-like selection				ucial	
CCQI				J	ļ	nd puri

Reduction of NCπ and CCπ backgrounds

 \blacktriangleright CC1 π 1-Ring e-like: improvement in signal efficiency and purity

Improved PID = less muon ring contamination

OBSERVED EVENT RATES AT SUPER-K

PREDICTED AND OBSERVED EVENT RATES AT SK

		Observed			
Sample	δ _{cp} =-π/2	$\delta_{cp}=0$	$\delta_{cp} = \pi/2$	$\delta_{cp} = \pi$	Rates
CCQE 1-Ring e-like FHC	73.5	61.5	49.9	62.0	74
$CC1\pi$ 1-Ring e-like FHC	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like RHC	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ -like FHC	267.8	267.4	267.7	268.2	240
CCQE 1-Ring μ -like RHC	63.1	62.9	63.1	63.1	68

- The number of observed events are largely in line with the predictions after oscillations
 - > The e-like samples have rates most consistent with the $\delta_{cp} = -\pi/2$ hypothesis
- > The observed μ -like rate in neutrino mode is lower than prediction
 - Consistent within statistical and systematic errors

EXTRACTING OSCILLATION PARAMETERS, STEP 2

Fit to SK data to extract oscillation parameter intervals

EXTRACTING OSCILLATION PARAMETERS, STEP 2

FLUX AND INTERACTION MODELING + ND280 CONSTRAINT

NEUTRINO PRODUCTION SIMULATION

- Beam monitors measure the proton beam current and trajectory input to flux simulation
- Interactions in 90 cm long graphite target produce hadrons (π,K...) simulated with FLUKA2011
 - Interaction rate and particle production tuned with NA61/SHINE thin (2 cm) target data (Eur. Phys. J. C76 (2016) no.2, 84)
- Propagation through magnetic horns and decay to neutrinos simulated in GEANT3

THE NEUTRINO FLUX PREDICTION

► Flux predictions and error bands derived from data-driven simulation:

- Flux prediction uncertainty is 8-12%
- Uncertainties on hadronic interaction modeling are largest
- NA61/SHINE data taken with replica T2K target is being incorporated for future analyses
 - Expect reduction of flux calculation uncertainty

NEUTRINO INTERACTION MODELING

- At T2K's energy dominant contribution: charged-current quasi-elastic CCQE interactions
 - Also interactions producing one or more pions
 - Nuclear effects: interactions that mimic a CCQE interaction

- ► Mimic CCQE interactions:
 - Neutrino scatters on a correlated pair of nucleons (left) (called multi-nucleon or 2 particle-2 hole, 2p-2h)
 - Neutrino scatter produces a pion, which is re-absorbed in the nucleus
 - Neutrino scatter produces a pion, which is absorbed in the detector
 56

INTERACTION MODEL IMPROVEMENTS

- In recent years, T2K made significant progress to improve the neutrino interaction model in NEUT (neutrino interaction generator):
 - Improved pion production model with tuning to data on hydrogen and deuterium
 - Inclusion of a model for multi-nucleon scattering processes: Valencia 2p-2h model (Phys. Rev. C83 (2011) 045501)
 - Improved the CCQE model by including the effect of long-range correlations in the nucleus (calculation technique called random phase approximation, RPA)
- This analysis: developed new parameterizations of the uncertainties in multi-nucleon and RPA modeling

MULTINUCLEON (2P-2H) MODELING ERROR

- ► 2p-2h processes can produce events with biased reconstructed energy
 - Energy mis-reconstruction largest in processes involving coupling to a Δ resonance
- Model the energy reconstruction error: allow strength of the 2p-2h cross-section to vary between all Δ-enhanced and all not-Δ-enhanced
- Also allow normalization for 2p-2h to vary separately for neutrinos and antineutrinos

RPA CORRECTION UNCERTAINTY

- Correction for long-range correlations in the nucleus modifies Q² dependence of CCQE cross section
- ► Introduce a parametrization of this correction:

$$f(x) = \begin{cases} A(1-x')^3 + 3B(1-x')^2x' + 3p_1(1-x')x'^2 + Cx'^3, & x < U\\ 1+p_2\exp(-D(x-U)), & x > U \end{cases} \quad x = Q^2 \\ x > U \end{cases}$$

 Uncertainties on the parameters cover the theoretical uncertainty on the RPA correction factor

FITTING ND280 DATA

- > Since 2016, include FGD2 (water targets) to include interactions on H_2O
 - ► Separate data sets in FGD1 and FGD2
- Neutrino mode separated by number of charged pions: CC-0π, CC-1π, CC-Other
- Antineutrino mode separate by number of TPC tracks: CC-1Track, CC-NTrack
 - > In antineutrino mode, separate samples for μ^+ and μ^- candidates
- Example fitted FGD2
 CC-0π muon momentum (left)
- The fit reproduces the data well with a p-value of 0.47

FITTED FLUX PARAMETERS

- ► Fitted flux parameters are generally near their nominal value of 1.0
- Most of the fitted flux parameters fall within their assigned 1 sigma prior uncertainty

► The 2p-2h for neutrinos is enhanced by 50%

- ► The 2p-2h for neutrinos is enhanced by 50%
- The 2p-2h shape is shifted so that the Δ-enhanced component of the cross section is increased to maximum

- ► The 2p-2h for neutrinos is enhanced by 50%
- The 2p-2h shape is shifted so that the Δ-enhanced component of the cross section is increased to maximum
- The RPA parameters for Q² below 1 GeV² are increased, enhancing the cross section in that region
 62

MEASURING OSCILLATION PARAMETERS

Compare observed rates at SK to predictions under oscillation hypotheses:

 $N(p_k, \theta_k; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) = \sum_{i}^{E_v \text{ bins flavors}} \sum_{j}^{flavors} P_{v_j \to v_k}(E_{v,i}; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) \Phi_j^{far}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$

- Prediction depends on modeling: neutrino flux, neutrino interaction cross sections and detection efficiency
 - Systematic errors enter here
- To reduce errors on the flux and interaction models, use measurements in ND280

$$N(p_k, \theta_k) = \sum_{i}^{E_v \text{ bins}} \Phi_k^{near}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$$

With near detector measurement, flux and interaction models constrained independently from the oscillation effect
MEASURING OSCILLATION PARAMETERS

Compare observed rates at SK to predictions under oscillation hypotheses:

 $N(p_k, \theta_k; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) = \sum_{i}^{E_v \text{ bins flavors}} \sum_{j}^{flavors} P_{v_j \to v_k}(E_{v,i}; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) \Phi_j^{far}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$

- Prediction depends on modeling: neutrino flux, neutrino interaction cross sections and detection efficiency
 - Systematic errors enter here
- To reduce errors on the flux and interaction models, use measurements in ND280

$$N(p_k, \theta_k) = \sum_{i}^{E_v \text{ bins}} \Phi_k^{near}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$$

With near detector measurement, flux and interaction models constrained independently from the oscillation effect

MEASURING OSCILLATION PARAMETERS

Compare observed rates at SK to predictions under oscillation hypotheses:

 $N(p_k, \theta_k; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) = \sum_{i}^{E_v \text{ bins flavors}} \sum_{j}^{flavors} P_{v_j \to v_k}(E_{v,i}; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) \Phi_j^{far}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$

- Prediction depends on modeling: neutrino flux, neutrino interaction cross sections and detection efficiency
 - Systematic errors enter here
- To reduce errors on the flux and interaction models, use measurements in ND280

$$N(p_k, \theta_k) = \sum_{i}^{E_v \text{ bins}} \Phi_k^{near}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$$

With near detector measurement, flux and interaction models constrained independently from the oscillation effect

MEASURING OSCILLATION PARAMETERS

Compare observed rates at SK to predictions under oscillation hypotheses:

 $N(p_k, \theta_k; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) = \sum_{i}^{E_v \text{ bins } flavors} \sum_{j}^{flavors} P_{\nu_j \to \nu_k}(E_{\nu,i}; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) \Phi_j^{far}(E_{\nu,i}) \sigma_k(E_{\nu,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$

- Prediction depends on modeling: neutrino flux, neutrino interaction cross sections and detection efficiency
 - Systematic errors enter here
- To reduce errors on the flux and interaction models, use measurements in ND280

$$N(p_k, \theta_k) = \sum_{i}^{E_v \text{ bins}} \Phi_k^{near}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$$

With near detector measurement, flux and interaction models constrained independently from the oscillation effect

BEAM STABILITY IN T2K

- Stable neutrino event rate monitored by INGRID on-axis detector
- Stable beam direction monitored using neutrinos (INGRID) and muons from neutrino parent particle decays (MUMON)

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \underbrace{(m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}_{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

Mass of target and recoil nucleons

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

Scattering on nucleons bound in nucleus

Recoil hadrons may be below detection threshold

Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering

- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- Reconstruct energy assuming CCQE:

Mass, energy, momentum, scattering angle of charged lepton

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e) + p_e \cos \theta_e}$$

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b) - E_e + p_e \cos \theta_e}$$

Nuclear binding energy 65

- Detect neutrinos through the charged-current interaction
 - ► Energetic muon or electron in final state can be detected

- Scattering on nucleons bound in nucleus Recoil hadrons may be below detection threshold
- Scattering on single bound nucleon called charged-current quasi-elastic **(CCQE)** scattering
- Signal mode: no detectable recoil hadrons in a water-Cherenkov detector
- ► Reconstruct energy assuming CCQE:

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

NEUTRINO OSCILLATION AT T2K

- ► Muon (anti)neutrino survival depends on $\sin^2(2\theta_{23})$ and Δm^2_{32}
- Electron (anti)neutrino appearance
 - sin²(θ₂₃), sin²(2θ₁₃) and Δm²₃₂ in leading term
 - ► Sub-leading dependence on δ_{cp}
 - > CP conservation at $\delta_{cp} = 0, \pi$
 - ► Maximal CP violation at $\delta_{cp} = -\pi/2, \pi/2$
 - ➤ Matter effect → dependence on the mass hierarchy
 - Normal Hierarchy (NH): enhanced rate for neutrinos, decreased for antineutrinos

WHY MEASURE THESE PARAMETERS?

- ► Lepton mixing allows for a **new source of CP violation** that can be studied with neutrinos
 - ► CPV through δ_{cp} may be sufficient source for leptogenesis (Nucl. Phys. B774 (2007) 1)
- Neutrino masses indicate new physics beyond the standard model and electroweak scale
 - Precise values of the mixing parameters may indicate or disfavor models of flavor symmetries

Predictions from $\cos\delta$ sum rules for discrete symmetries:

Predictions of flavor symmetry forms with projected measurement precision

A BRIEF HISTORY OF NEUTRINO EXPERIMENTS

- 1930 Proposal by Wolfgang Pauli that beta decay spectrum could be explained by light neutral spin 1/2 particle
- ► 1956 Cowan and Reines directly detect the electron (anti)neutrino
- 1962 Brookhaven AGS neutrino experiment discovers muon neutrinos with accelerator-based neutrino source
- 1960s-1980s Ray Davis's Homestake Experiment observes a deficit of neutrinos from the sun
- 1980s-1990s Nucleon decay experiments such as Kamiokande and IMB observe deficits of neutrinos from cosmic rays
- 1987 Observation of neutrinos from 1987a supernova at Kamiokande and others
- 1998 Super-Kamiokande presents strong evidence that atmospheric neutrino deficit is due to oscillations
- 2001 SNO and Super-K show that solar neutrino deficit is due to oscillations, confirmed by KamLAND

BINNING OF THE DATA

- The electron-like data are binned in 2 dimensions
 - ► θ = angle of the electron candidate relative to beam direction
 - E_{rec} = reconstructed energy assuming QE kinematics or
 p = momentum of the electron candidate
 - Sensitivity is the same whether we use E_{rec} or p
- The muon-like data are binned in E_{rec} only

Neutrino Mode 1 Electron-like Ring

FITTED DATA DISTRIBUTIONS

ADVANTAGES OF FITQUN

OSCILLATION MODES IN T2K

- Start with a beam of 99% muon (anti)neutrinos
- ► How many of the muon (anti)neutrinos survive:

$$P_{\mu \to \mu} = 1 - \left(\sin^2 2\theta_{23} - \sin^2 \theta_{23} \cos 2\theta_{23} \sin^2 2\theta_{13}\right) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}}\right) + \dots$$

How many of the muon (anti)neutrinos oscillate to electron (anti)neutrinos:

$$P_{\mu \to e} = \frac{\sin^2 \theta_{23} \sin^2 2 \theta_{13}}{\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right)} = \frac{\sin 2 \theta_{12} \sin 2 \theta_{23}}{2 \sin \theta_{13}} \sin^2 2 \theta_{13} \sin \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) \sin \delta_{CP} + \dots$$

sign flips for antineutrinos

- The appearance of the electron (anti)neutrinos
 - ► Dependence on $sin^2\theta_{23}$ can allow for determination if θ_{23} is >45° or <45°
 - > Matter effects give some sensitivity to the mass hierarchy
 - Sign flip in sub-leading term gives different probability for neutrinos and antineutrinos - CP violation!

2016 VS. 2017 RESULTS

90% confidence intervals:

Run 1-7c: Normal hierarchy: [-3.13, -0.39] radians Inverted hierarchy: [-2.09, -0.74] radians

Run 1-8: Normal hierarchy: [-2.80, -0.83] radians

ND280 HIGH ANGLE/BACKWARD RECONSTRUCTION

- ► New ND280 samples with high-angle and backward tracks have been developed
- ► Have 10-20% efficiency in the high-angle and backward regions
- ► Will be included in future fits to ND280 data

PROTON RECONSTRUCTION IN ND280

Now developing event selections that include final states with reconstructed protons

 Require one μ-like and p-like track(s) starting in FGD1 (CH target)

- Use a Michel electron tag and ECal EM shower veto to reject 1π backgrounds
- Use of many samples gives wide kinematic acceptance

Reconstructed kinematics

ND280 UPGRADE

Plan to retain upstream Ecal-P0D

Keep current tracker + DS Ecal New detectors

Magnet and surrounding Ecal also preserved

Two TPCs Scintillator target TOF detectors

Efficiency estimated with GEANT simulation

Example: ν_{μ} CC inclusive selection

Large angle efficiency is improved as expected. (preliminary: optimization still ongoing)

SAMPLES CONSTRAINTING THE CP PHASE

- Largest effect is the CC1 π 1-Ring e-like sample
- Contributions from other samples except for CCQE 1-Ring µ-like in antineutrino-mode

ANTINEUTRINO MODE 1R E-LIKE ANGULAR DIST.

- Observed events are distributed at lower energy and higher angle where the the signal prediction is relatively small
- Stronger preference against δ_{cp} =0 which predicts a harder spectrum

ND280 PRE AND POST-FIT (NEUTRINO MODE)

- ND280 fit to neutrino mode CC0π data
- Significant improvement in data/simulation residuals from fit

TOWALL DISTRIBUTIONS

WALL DISTRIBUTIONS

