Characterization of superheated fluids in the PICO-0.1 bubble chamber for the search of Dark Matter

FRÉDÉRIC TARDIF

WNPPC, Mont-Tremblant, February 15-18, 2018

Université na de Montréal

Winter Nuclear & Particle Physics Conference

Outline

- ► The PICO Experiment
 - ► PICO-0.1
- ▶ PICO-0.1 with C_2CIF_5 : ³⁵CI (n_{th},p) ³⁵S
 - ▶ 17 keV monoenergetic ³⁵S recoil
 - ► Threshold characterization
 - ▶ 600 keV monoenergetic proton recoil
 - Proton detection with a bubble chamber
- ▶ PICO-0.1 with $C_2H_2F_4$
 - Proton detection

PICO Experiment : Superheated liquid detectors

Latest Future PICO-60 results : detectors: **PICO-500** PICO-40L Pressure Vessel WARM (superhea Bellows ted) Acoustic Sensors Water (Buffer) (Piezos) C3F8 (Target) COLD Cameras Propylene Glycol (liquid) (hydraulic fluid)

PICO Experiment : Superheated liquid detectors

Bubble chamber event :

4

Incoming particle + Superheated fluid+ Energy deposition > Threshold energy

Phase transition, bubble event Recompression, end of event

PICO-0.1 Calibration Chamber

Same principle as all other PICO bubble chambers

5

Purpose : calibration, tests, active mass fluids characterization, etc.

PICO-0.1 filled with $C_2 CIF_5$

- ▶ ³⁵Cl (n_{th},p) ³⁵S : monoenergetic recoils
 - ▶ 17 keV ³⁵S recoil
 - 600 keV proton recoil
- Monoenergetic recoils : Unique opportunity to precisely characterize thresholds in superheated fluids bubble chambers

6

Can we detect proton recoils in bubble chambers?

7

Previously: PICO-0.1 with C_3F_8

 Threshold detector : integration of energy spectrum

Monoenergetic ³⁵S recoil : Step function

17 keV ³⁵S monoenergetic recoil results

17 keV ³⁵S monoenergetic recoil analysis: Revisited 'Seitz' Threshold

Hypothesis : Seitz threshold (from the Seitz Model for superheated liquids) is the Heaviside limit of a Gaussian Blurred Step (GBS) of mean μ and width σ:

$$H(x) = \frac{1}{2} \lim_{\sigma \to 0} \operatorname{erf}\left(\frac{\mu - x}{\sigma}\right)$$

Revisited threshold (event probability) :

$$P(E, E_{th}) = \frac{1}{2} \left[\operatorname{erf} \left(\frac{E - E_{th}}{\sqrt{2}\sigma} \right) - \operatorname{erf} \left(\frac{0 - E_{th}}{\sqrt{2}\sigma} \right) \right]$$

17 keV ³⁵S monoenergetic recoil analysis: Revisited 'Seitz' Threshold

Revisited threshold : Fits with data

17 keV ³⁵S monoenergetic recoil analysis: Revisited 'Seitz' Threshold

Also with previous monoenergetic data (PICASSO) :

600 keV proton recoils

- ▶ ³⁵Cl (n_{th},p) ³⁵S : 17 keV ³⁵S recoil <u>and</u> 600 keV proton recoils
 - Can't isolate only proton recoils in detector
 - Can compare to data <u>without</u> proton recoils
- ³⁵S+p recoils vs. Fast neutrons elastic scattering
 - ³⁵S alone and fast neutrons recoils have same acoustics (depends only on threshold energy)

- Protons could create their own bubble (too close to ³⁵S bubble to been seen on camera)
- ³⁵S+p should have a more powerful acoustic signal when proton creates its own bubble

600 keV proton recoil results

Acoustic power normalized distribution

 Clearly, excess at high acoustic power : proton events

PICO-0.1 filled with $C_2H_2F_4$

- Hydrogenated freon : proton recoils
- From kinematics :
 - Fluorine : $E_{R max} \approx 0.19 E_{n}$
 - Carbon : $E_{R max} \approx 0.28 E_{n}$
 - Hydrogen : $E_{R max} = E_n$

$$E_R = \frac{2A}{[A+1]^2} (1 - \cos\theta) E_n$$

15

PICO-0.1 filled with $C_2H_2F_4$: Results

► For 22 keV neutrons :

 Conclusion : We see proton recoils in the region [6,22] keV

Proton recoils : Why is it important?

- Allows to search for WIMPs at much lower mass
- Limits plot could look like :
 - Unexplored region in parameter space

Conclusion

Monoenergetic 17 keV ³⁵S recoil : provides insight on thresholds for superheated fluids bubble chambers

- ► 600 keV proton recoils and $C_2H_2F_4$: show evidences for proton recoils detection in bubble chambers
 - Allows to search for WIMPS at low masses

Thank you!

QUESTIONS?

Backup slides

20

Seitz Threshold for bubble formation in superheated fluids

- Critical Radius : Minimum radius the bubble needs to have not to collapse on itself.
- Critical Energy : Energy needed to create a bubble in a superheated fluid, deposited inside the critical radius.
- Given by the « Seitz Model » :

$$Q = \frac{4}{3}\pi r_c^3 \rho_b (h_b - h_l) + 4\pi r_c^2 \left(\sigma - T\frac{\partial\sigma}{\partial T}\right)$$

Seitz Threshold

Proton bubble efficiency in PICO-0.1 Acoustics analysis : Acoustic Power (all at 35 PSI)

Proton bubble efficiency in PICO-0.1 Acoustics analysis : FFT

Proton bubble efficiency in PICO-0.1 Acoustics analysis : FFT

Proton bubble efficiency in PICO-0.1 Acoustics analysis : Acoustic Power (all at 35 PSI)

