Overview of the Higgs and Standard Model physics at ATLAS

EXPERIMENT

Tamara Vázquez Schröder (McGill University) on behalf of the ATLAS Collaboration McGill

Winter Nuclear and Particle Physics Conference Mont Tremblant, Québec 15-18 February 2018

The Standard Model of Particle Physics

The SM provides unified picture of the electroweak (EW) and strong interactions

building blocks of matter: **fermions** (leptons and quarks)

force carriers: **bosons** (gluon, photon, W+-, Z)

Higgs field: added to the SM to generate the mass of EW bosons and fermions

Tamara Vázquez Schröder (McGill University)

Outline

***** Detector performance

***** Standard Model highlights

- W boson mass measurement
- Top quark mass measurement
- Single top and tZ production evidence

***** Higgs boson physics highlights

- Mass measurement
- Differential cross section measurements
- Higgs-fermion coupling measurements
- Rare decays & HH: long term Higgs program

***** Conclusions

m(W), m(top), m(H) are related to fundamental parameters of the Standard Model and provide key information to test its consistency

Disclaimer: as expected, the full ATLAS SM&Higgs program cannot be covered in 30' - this is an overview of some of the most relevant recent results!

Detector performance (I)

***** Excellent performance of LHC and ATLAS in Run 2 so far:

- Record instantaneous luminosity for pp interactions in 2017: 2.06x10³⁴ cm⁻²s⁻¹
 - double the LHC design!
- 80 fb⁻¹ good for physics from 87 fb⁻¹ recorded by ATLAS

*** Improved b-tagging** performance with the inclusion of IBL (Insertable B-Layer) for Run 2

60

50

40

30

20

ATLAS Online Luminosity

2011 pp 🛛 🛛 🛛 🛛 🗸 🗸 🗸 🗸 🗸

2012 pp

2015 pp

2016 pp

2017 pp

√s = 8 TeV

√s = 13 TeV

√s = 13 TeV

√s = 13 TeV

Delivered Luminosity [fb⁻¹]

Detector performance (II)

Biggest challenge: robustness against pile-up

- Controlling trigger rates at high interaction per bunch crossing
- Online and offline reconstruction performance maintained even at the highest pile-up

improved HLT algorithms to suppress dependence of E_Tmiss trigger rates on pile-up

55

Tamara Vázquez Schröder

Standard Model (SM)

No measurements yet with 2017 data

SM cross section measurements in excellent agreement with theory so far

 Some deviations in tt̄W, updates with full 2015+2016 dataset to come...

* Several new differential cross section measurements available

Standa	rd Model Total Produ	ction Cross	Section Measur	ements Status: July 2017	∫£ dt [fb ⁻¹]	Reference
n n	$\sigma = 96.07 \pm 0.18 \pm 0.91 \text{ mb (data)}$ COMPETE HPB1B2 (theory)				50×10 ⁻⁸	PLB 761 (2016) 158
hh	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb} \text{ (data)}$ COMPETE HPR1R2 (theory)		0		8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014
14/	$\sigma = 190.1 \pm 0.2 \pm 6.4 \text{ nb (data)}$ DYNNLO + CT14NNLO (theory)		Þ	L L	0.081	PLB 759 (2016) 601
vv	$\sigma = 98.71 \pm 0.028 \pm 2.191$ nb (data) DYNNLO + CT14NNLO (theory)		0		4.6	EPJC 77 (2017) 367
	σ = 58.43 ± 0.03 ± 1.66 nb (data) DYNNLO+CT14 NNLO (theory)				3.2	JHEP 02 (2017) 117
Z	$\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data) DYNNLO+CT14 NNLO (theory)		Δ		20.2	JHEP 02 (2017) 117
	$\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data) DYNNLO+CT14 NNLO (theory)		0		4.6	JHEP 02 (2017) 117
	$\sigma = 818 \pm 8 \pm 35 \text{ pb} \text{ (data)}$ top++ NNLO+NLL (theory)	¢		Ó	3.2	PLB 761 (2016) 136
tī	$\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	Ą		4	20.2	EPJC 74: 3109 (2014)
	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)} \\ \text{top++ NNLO+NNLL (theory)}$	¢.		•	4.6	EPJC 74: 3109 (2014)
	$\sigma = 247 \pm 6 \pm 46 \text{ pb (data)}$ NLO+NLL (theory)	0			3.2	JHEP 04 (2017) 086
t _{t-chan}	$\sigma = \begin{array}{l} 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb (data)} \\ \text{NLO+NLL (theory)} \end{array}$	Δ		4	20.3	arXiv:1702.02859 [hep-ex]
	$\sigma = \begin{array}{l} 68 \pm 2 \pm 8 \text{ pb (data)} \\ \text{NLO+NLL (theory)} \end{array}$	0			4.6	PRD 90, 112006 (2014)
	$\sigma = 142 \pm 5 \pm 13 \text{ pb} \text{ (data)}$ NNLO (theory)	Þ	_		3.2	arXiv: 1702.04519 [hep-ex]
WW	$\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb} \text{ (data)}$ NNLO (theory)	\triangle	Theory		20.3	PLB 763, 114 (2016)
	$\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb (data)}$ NNLO (theory)	0			4.6	PRD 87, 112001 (2013) PRL 113, 212001 (2014)
	$\sigma = 57 + 6 - 5.9 + 4 - 3.3 \text{ pb (data)}$ LHC-HXSWG YR4 (theory)	¢	LHC pp $\sqrt{s} = 7 \text{ TeV}$	Þ	36.1	ATLAS-CONF-2017-047
ы	$\sigma = 27.7 \pm 3 + 2.3 - 1.9 \text{ pb (data)}$ LHC-HXSWG YR4 (theory)	<u>م</u>	Data		20.3	EPJC 76, 6 (2016)
п	$\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7 \text{ pb} (data)$ LHC-HXSWG YR4 (theory)	þ	stat		4.5	EPJC 76, 6 (2016)
	$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$ NLO+NNLL (theory)		stat ⊕ syst		3.2	arXiv:1612.07231 [hep-ex]
Wt	$\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)}$ NLO+NLL (theory)	4	LHC pp $\sqrt{s} = 8$ TeV		20.3	JHEP 01, 064 (2016)
	$\sigma = \begin{array}{c} 16.8 \pm 2.9 \pm 3.9 \text{ pb (data)} \\ \text{NLO+NLL (theory)} \end{array}$	þ			2.0	PLB 716, 142-159 (2012)
	$\sigma = 50.6 \pm 2.6 \pm 2.5 \text{ pb} \text{ (data)}$ MATRIX (NNLO) (theory)	¢	▲ Stat	b	3.2	PLB 762 (2016) 1 PLB 761 (2016) 179
WZ	$\sigma = 24.3 \pm 0.6 \pm 0.9$ pb (data) MATRIX (NNLO) (theory)	Δ	stat ⊕ syst	▲	20.3	PRD 93, 092004 (2016) PLB 761 (2016) 179
	$\sigma = \begin{array}{l} 19 + 1.4 - 1.3 \pm 1 \text{ pb (data)} \\ \text{MATRIX (NNLO) (theory)} \end{array}$	•	IHC nn √s - 13 TeV	o	4.6	EPJC 72, 2173 (2012) PLB 761 (2016) 179
	$\sigma = 17.2 \pm 0.6 \pm 0.7$ pb (data) Matrix (NNLO) & Sherpa (NLO) (theory)	¢		¢	36.1	ATLAS-CONF-2017-031 PLB 735 (2014) 311
ZZ	$\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb (data)}$ NNLO (theory)	Δ		Z	20.3	JHEP 01, 099 (2017)
	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 {\rm pb}$ (data) NNLO (theory)	0	stat ⊕ syst	•	4.6	JHEP 03, 128 (2013) PLB 735 (2014) 311
t _{s-chan}	$\sigma = 4.8 \pm 0.8 + 1.6 - 1.3 \text{ pb (data)}$ NLO+NNL (theory)				20.3	PLB 756, 228-246 (2016)
± <u>=</u> \//	$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$	ATLAS	Preliminary		3.2	EPJC 77 (2017) 40
LLVV	σ = 369 + 86 − 79 ± 44 fb (data) MCFM (theory)				20.3	JHEP 11, 172 (2015)
17	$\sigma = 0.92 \pm 0.29 \pm 0.1$ pb (data) Madgraph5 + aMCNLO (theory)	Run 1,2	$\sqrt{s} = 7, 8, 13 \text{ TeV}$		3.2	EPJC 77 (2017) 40
ιιz	$\sigma = 176 + 52 - 48 \pm 24 \text{ fb (data)}$ HELAC-NLO (theory)				20.3	JHEP 11, 172 (2015)
tZj	$\sigma = 620 \pm 170 \pm 160 \text{ fb} \text{ (data)}$ NLO+NLL (theory)	1 ml			36.1	TOPQ-2016-14
	10-5 $10-4$ $10-3$ $10-2$ $10-1$	1 101 102 10	13 104 105 106 1011	105115025		
	10 10 10 10 10 10 10	T 10- 10- 10	J. 10, 10, 10, 10, 10,	0.5 1 1.5 2 2.5		
			σ [pb]	data/theory		

W boson mass

arXiv:1701.07240 - submitted to EPJC

★ Uses 4.6 fb⁻¹ of 7 TeV data (W→ev/µv)

Impressive amount of work since 2011 to understand detector response and modelling of kinematic quantities

- calibration of W recoil with $Z \rightarrow \ell \ell$ data
- * First measurement at the LHC!
 - Similar precision to best previous single experiment measurement (from CDF)
- ***** Result consistent with SM expectation
- ***** Further progress requires improved **modelling**

m_W = 80.370 ± 0.019 GeV = ± 7 MeV (stat) ± 11 MeV (syst) ± 14 MeV (modelling)

Top quark mass

ATLAS *l*+jets 8 TeV

ATLAS dilepton 8 TeV

ATLAS Run 1 comb

- ***** Exploiting a **3D** template technique: **top quark mass** determined together with a **global jet energy scale factor** and a relative b-to-light-jet energy scale factor
- **Run 1 top quark mass combination at 0.3% precision level!**
 - Systematic uncertainties reduced in combination due to correlations between measurements

top quark mass measurement [GeV]

 172.08 ± 0.39 (stat) ± 0.82 (syst)

 172.99 ± 0.41 (stat) ± 0.74 (syst)

 172.51 ± 0.27 (stat) ± 0.42 (syst)

Top Pair Branching Fractions

ATLAS-CONF-2017-071

Single top (+Z) cross section

First, evidence for single top quark production at LHC in t-channel (a), s-channel (b) and Wt-associated (c) production

- * Now, also evidence for **tZ production**
 - Significance = 4.2σ (5.4 σ) observed (expected)
 - Cross-section = 620 ± 170 (stat) ± 140 (syst) fb
 - consistent with SM expectation

- Events containing 3 leptons (e/μ, 2 originating from Z) and two jets, one of which is identified as a b-quark jet are selected
- The major backgrounds are diboson, tt, and Z+jets
- * Using **neural network** to improve the background rejection and extract the signal

Higgs boson physics

Since its discovery in 2012, focus on precision measurements of production and decay of the Higgs boson, and the search for additional BSM Higgs bosons

Higgs boson mass

Higgs boson mass measured using kinematic categories from cross-section measurement in 4ℓ and γγ channels

- * Complementary measurements:
 - 48 channel dominated by stat uncertainty
 - γγ channel dominated by syst uncertainty (γ energy scale calibration)
- In 4ℓ channel, measurements consistent between electron/muon sub-channels
- *4ℓ and γγ measurements consistent with each other

* Combined measurement consistent with Run-1

ATLAS-CONF-2017-046

Tamara Vázquez Schröder

Higgs production modes: reminder

- * Gluon fusion has the largest production rate, order of magnitude higher than VBF or VH
- \Rightarrow Large cross section increase from 8 to 13 TeV, especially for ttH and tH

Tamara Vázquez Schröder

 \overline{t}

Higgs differential cross section

***** With increasing statistics

 Measure differential cross-sections as functions of Higgs boson kinematics and kinematics of additional jets in H→γγ and H→ZZ*→4ℓ

pT (H) consistent with SM prediction in both channels

data/prediction agreement slightly worse towards higher jet multiplicity

JHEP 10 (2017) 132

ATLAS-CONF-2017-045

Tamara Vázquez Schröder

Higgs coupling to fermions

First evidence of Higgs coupling to fermions from the **TT channel** (ggF and VBF) in Run 1 <u>JHEP 04 (2015) 117</u>

米 New in Run 2:

- top Yukawa coupling: evidence for ttH production
- b-quark Yukawa coupling: evidence in VH(H→bb)

≭ Longer term:

 Higgs coupling to 2nd generation fermions (cc, μμ)

Higgs coupling to fermions: top via ttH

indirect top Yukawa coupling constraints from gluon fusion production and $\gamma\gamma$ decay...

... assuming no additional heavy particles which could couple to the Higgs boson!

direct top Yukawa coupling measurement only possible at the LHC via ttH and tH

Similar signature is visible in SUSY searches, VLQ, black holes or heavy charged Higgs

If such new physics scenarios exist, will see significant deviations from SM prediction

Tamara Vázquez Schröder

ttH analysis channels: summary

Tamara Vázquez Schröder (McGill University)

ttH (multileptons): analysis strategy

Target: ttH with

- $H \rightarrow WW/ZZ/TT \rightarrow \geq 1\ell$
- $t\bar{t} \rightarrow (\ell + jets, dilepton)$

High multiplicity final state *** Rare in SM:** same-sign 2ℓ , 3ℓ , 4ℓ

• Exploit presence of hadronically decaying T

* Split in categories based on **number of e/μ** and **number of τ**

- Loose lepton definition (no isolation, loose ID)
- Dilepton and single lepton triggers

Tamara Vázquez Schröder

Number of

arXiv:1712.08891 submitted to PRD

Signal extraction: fit or cut on **BDTs (boosted decision tree)** to discriminate signal against the main background processes [except in 3*l*+1_T]

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS + 1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$t\bar{t}Z$ / -	$t \overline{t}$	all	$t \overline{t}$	-
Discriminant	$2 \times 1D BDT$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	-	-	-	-	-

Tamara Vázquez Schröder

arXiv:1712.08891 submitted to PRD

tīH (multileptons): results

Channel	Significance		
	Observed	Expected	
$2\ell OS+1\tau_{had}$	0.9σ	0.5σ	
1ℓ + $2\tau_{had}$	-	0.6σ	
4ℓ (*)	-	0.8σ	
$3\ell + 1\tau_{had}$	1.3σ	0.9σ	
2ℓ SS+ $1\tau_{had}$	3.4σ	1.1σ	
3ℓ	2.4σ	1.5σ	
2ℓSS	2.7σ	1.9σ	
Combined	4.1 <i>σ</i>	2.8σ	

* Statistical and systematic uncertainties are comparable

*** Largest systematic uncertainties**:

ullet signal modelling, jet energy scale and resolution, and the non-prompt light ℓ estimates

***** Significance with respect to background-only hypothesis = **4.1** σ (**2.8** σ) obs (exp)

***** Compatible with SM (within 1.4σ)

(*) for m(4ℓ) != Higgs mass window

tt̄H (H→bb̄): analysis strategy

- **★ Biggest challenge**: good and precise modelling of the tī+HF (≥1b, ≥1c) background
 - Nominal sample: 5-flavour scheme
 - Relative contribution of tī+≥1b subcomponents reweighted to tī+bb predictions by Sherpa+OpenLoops (4-flavour scheme)

*** Channel categorisation** based on

- Number of ℓ (1 or 2 opposite-sign)
- Number of jets
- Requirements on the b-tagging discriminant (4 calibrated working points)
- Resolved or boosted, for single lepton channel

MVA analysis needed to discriminate signal from the overwhelming background

Tamara Vázquez Schröder

arXiv:1712.08895 submitted to PRD

tt̄H (H→bb̄): results

* Normalisation factors for $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ left free-floating in the fit:

- NF(tī+≥1b) = 1.24 ± 0.10
- NF(tī+≥1c) = 1.63 ± 0.23

 \Rightarrow Most relevant uncertainties related to t $\bar{t}+\geq 1b$ background modelling

* Analysis is **dominated by systematic** uncertainties

***** Significance w.r.t background-only hypothesis: **1.4σ (1.6σ) obs (exp)**

tter termination

Channel	Significance			
	Observed	Expected		
Multilepton	4.1 <i>o</i>	2.8σ		
$H \rightarrow b \bar{b}$	1.4σ	1.6σ		
$H ightarrow \gamma \gamma$	0.9σ	1.7σ		
$H \rightarrow 4\ell$		0.6σ		
Combined	4.2σ	3.8 <i>o</i>		

★ Combination of multilepton, bb̄, γγ, and ZZ→4ℓ ^ξ. tīH analyses

* Results in agreement with the SM predictions

- σ(ttH) =590 ⁺¹⁶⁰ -150 fb
- σ_{SM}(ttH) =507 +35 -50 fb

*****Significance w.r.t background-only hypothesis:

4.2σ (3.8σ) obs (exp)

Evidence for ttH production!

Higgs coupling to fermions: b-quark via VH(H→bb̄)

Rare(r) Higgs decays

- all using 36.1 fb⁻¹ Run 2 data
- ZH, H→cc ATLAS-CONF-2017-078
 - Z decaying leptonically
 - Set upper limits for σ(pp→ZH)x𝔅(H→cc): <
 2.7 pb observed (3.9 pb expected)
 - SM value is 25.5 fb
 - Sensitivity to cc SM still quite far away!
- Н→Zү

<u>JHEP 10 (2017) 112</u>

- Z decaying leptonically
- Set upper limits for σ(pp→H)xB(H→Zγ): <
 6.6 observed (5.2 expected)xSM
- SM value of $\mathcal{B}(H \rightarrow Z_Y)$ is 1.5×10^{-3}
- H**→**µµ

PRL 119 (2017) 051802

- Categories enriched in ggF and VBF Higgs production
- Set upper limits for σ(pp→H)xB(H→µµ): <
 3.0 observed (3.1 expected)xSM
- SM value of $\mathcal{B}(H \rightarrow \mu \mu)$ is 2.2x10⁻⁴

Towards

measurements

of Yukawa

coupling of

2nd generation

fermions!

Higgs self-coupling

* Not only are we interested in studying the Higgs couplings to other particles...

- We also want to understand its **self-coupling** λ !
- λ is predicted once Higgs boson mass is known
 - Any deviation from the HH production measurement would imply new physics!

ATLAS-CONF-2016-049

Tamara Vázquez Schröder

 $= V_0 + \frac{1}{2}m_h^2h^2 + \frac{m_h^2}{2v^2}vh^3 + \frac{1}{4}\frac{m_h^2}{2v^2}h^4$

Higgs mass term

λhhh

hh-production

Conclusions

★ Many ground-breaking ATLAS physics results with the 2015+2016 Run-2 dataset, including evidence for H→bb and ttH production

* Standard Model and Higgs measurements are reaching unprecedented precision

- New analyses trying to target tough Higgs decays
- Higgs self-coupling beyond current reach

2017 has been another record year - data on tape is larger than what we have analysed so far at 13 TeV!

* 2018 will bring even more data for pp and heavy ion collisions

Conclusions

Thanks to the LHC and injector complex team & my collaborators

The ATLAS Collaboration

M. Aaboud^{137d}, G. Aad⁸⁸, B. Abbott¹¹⁵, O. Abdinov^{12,*}, B. Abeloos¹¹⁹, S.H. Abidi¹⁶¹ M. Auoud J. C. Audu, B. Auoud, J. C. Audunov, T. B. Aueuos, S. Ar. Audu, S. Sobergell, N. L. Arbanami, H. Abarmawiczi, M. H. Aberneti, Y. X. Abulatiti, "R. S. Acharyal⁶⁷a.¹⁶⁷A. S. Adachi¹⁵⁷, L. Adamczyk⁴¹a, J. Adelman¹¹⁰, M. Adersbergerl¹², T. Adye¹³³, A. Affolder¹³⁹, Y. Afik¹⁵⁴, C. Agheorghiesei²⁸⁵, J. A. Aguilar-Sawedra^{128,128}, S. P. Ahlen²⁴, F. Ahmadov^{68,6}, G. Atell^{1153,128}, S. Akatsuka¹¹, "TPA. Akesson⁴⁴, E. Akill⁵², A. V. Akimov⁶⁸, F. Ahmadov^{6,k}, G. Akelli^{135,135}, S. Afkarsuka⁷¹, T.P.A. Åkesson⁸⁴, E. Akilli²⁵, A.V. Akimov⁶⁸, G.L. alberghi^{72,526}, D. Alberd¹⁷², P. Albicocco⁵⁰, M.J. Alconad, Verzini⁷⁴, S.C. Alderweireld¹⁰⁶, M. Aleksan^{47,50}, G. Alexañov⁶⁸, G. Alexañol^{47,5}, T. Alexopoulos¹⁰, M. Alhrooh¹¹⁵, B. Ali¹⁶, M. Aleksan^{47,66}, G. Alexaño^{47,50}, T. Alexopoulos¹⁰, M. Alhrooh¹¹⁵, B. Ali¹⁶, M. Aleksan^{47,66}, G. Alexaño^{48,6}, J. Alison³³, S.P. Alkire³⁸, C. Allara¹¹⁹, B.M.M. Allbrooke¹⁵¹, B. W. Allen¹¹⁸, P. Allport¹⁰, A. Aloissi^{106,106,6}, A. Alonso^{17,4}, C. Alpiginal¹⁴⁰, A. Aloissi^{106,106,6}, A. Alonso^{17,4}, C. Alpiginal¹⁴⁰, A. Alshehri⁵⁶, M.I. Alstaty³⁸, B. Alvarez Gonzalez³², D. Álvarez Piqueras¹⁷⁰, M.G. Alviggi^{106,106,6}, B.T. Amaido¹⁶, Y. Amaral Coutinho⁵⁶, L. Amatoro¹², C. Amatopulo^{45,41}, L. S. Ancu²⁷, N. Andari¹⁹, T. Anden¹¹, C.F. Ander⁵⁶, S. Amoros¹⁵⁶, C. Anastopulot¹⁴⁴, I.S. Ancu²⁷, N. Andari¹⁹, S. Angelidaki⁵³, I. Angelozzi¹⁰⁹, A. Agerami¹⁸, A.V. Anisenko^{111,c}, A. Annovi¹²⁰⁸, C. Antel⁶⁰⁸, M. Antonel¹¹⁰⁹, J. Antorin¹⁶⁶, F. Anulli¹⁵⁴, M. Aok⁶⁹, L. Aperio Bella²², G. Arabidz²⁰³, Y. Arai⁶⁹, J.P. Anroup^{127,20}, V. Araujo Ferraz²⁶⁴, A. T.H. Arce⁶⁸, R.E. Ardel¹⁰⁰, F. A Arutyo¹²⁰⁴, C. Antel⁶⁰⁴, M. Antonel¹¹⁰⁷, A. Antero^{27,27}, A. Anter^{57,27}, A. Anter^{59,4}, S. Angelidaki⁵³, J. Antego^{120,4}, V. Ante⁵⁶, R. Antel⁶⁰⁴, M. Antonel¹⁰⁵, A. Antel⁶⁰⁴, M. Antonel¹⁰⁵, A. Antel⁶⁰⁴, M. Antonel¹⁰⁵, C. Antel⁶⁰⁴, M. Antonel¹⁰⁵, C. Antel⁶⁰⁴, M. Antonel¹⁰⁵, A. Arutyo¹⁵⁰, J. Antrim¹⁶⁵, F. Anulli¹⁵⁴, M. Ante⁶⁷, R. E. Ardel¹⁰⁰, F. A. Antel⁶⁰⁴, M. Arwyonoluc⁶⁶, A. Lawryonouloc⁶⁶, A. Lawryonouloc⁶⁶, A. Lawryono¹⁵⁵, P. Antul¹⁵⁵, M. Antel⁶⁰⁴, M. Antonel¹⁰⁵, P. Antul¹⁵⁵, M. Antel⁶⁰⁵, M. Antel⁶⁰⁵, M. Arwyono¹⁵⁵, A. Arwyono¹⁵⁵, A. Antul¹⁵⁵, A. Antel⁶⁰⁵, M. Antel⁶⁰⁵, M. Arwyono¹⁵⁵, A. Arwyono¹⁵⁵, A. Antul¹⁵⁵, P. Antul¹⁵⁵, P. Antul¹⁵⁵, P. Antul¹⁵⁵, P. An G. Arabidze⁵⁰, Y. Ani²⁰, J.P. Araque^{14,0}, V. Araijo Ferraz^{40,4}, A.T.H. Arce²⁰, R.E. Ardell^{10,4}, F.A. Arduh¹⁷, J.F. Arguin¹⁰, S. Argyropoulos^{6,4}, A.J. Armbonste²⁰, L.J. Armitage¹⁷, O. Araac¹⁶, H. Arnold¹⁸⁰, M. Artaliz⁹⁰, O. Aralan²³, A. Aramono^{10,4}, G. Artoni¹², S. Arze⁵⁶, S. Asai¹⁵⁷, N. Asbah¹⁵, A. Ashienazi¹⁵⁵, L. Asquinth¹⁵¹, K. Assamagan²⁷, R. Astalos^{146a}, R.J. Atkin¹⁴⁷, M. Atimson^{10,40}, N.B. Atlay^{14,6}, K. Augsten¹³⁰, G. Avollo³, R. Aramidou³⁶, B. Axen¹⁶, M.K. Ayoub³⁵ G. Azuelog^{37,41}, A.E. Baas^{60,4}, M.J. Baca¹⁹, H. Bachaco^{113,5}, K. Bachas^{70,50}, M. Backe¹²², P. Bagnail³³Latla³⁰, M. Bahman²⁴, H. Bahrasema¹⁴⁴, J.T. Baine^{33,31}, Baji²⁵, O.K. Baker¹⁷⁹, P.J. Backer¹⁰⁹, D. Backb^{114,27}, J. Da Badk^{114,15}, P. Balk¹⁷⁵, F. Ball¹³⁵, W.K. Bahmas¹²⁴, P.J. Backer¹⁰⁹, D. Backb¹²⁴, C. And S. Andre J. Backer¹⁵⁵, F. Ball¹³⁵, W.K. Bahmas¹²⁴, D. K. Backer¹⁰⁹, D. Backb¹²⁴, S. Angel^{114,15}, P. Back¹⁷⁵, F. Ball¹³⁵, W.K. Bahmas¹²⁴, T. Sanga¹⁴, J. Backb¹⁵⁵, F. Ball¹⁵⁵, P. Back¹⁵⁵, P. Ball¹⁵⁵, P. Back¹⁵⁵, P. Ball¹⁵⁵, P. Bal P.J. Bakker¹⁰⁹, D. Bakshi Gupta⁴⁴, E.M. Baldin^{11,12}, P. Balkk^{10,2}, F. Balli^{15,3}, W.K. Balunas^{12,4}, E. Banas⁴², A. Bandyopadhypy²¹, Sw. Banejee¹, Defer, A. A. E. Bannoura¹⁷⁷, L. Bark¹⁵⁵, E.L. Barberio⁹¹, D. Barberis^{536,258}, M. Barbero⁸⁸, T. Barillarl¹⁰³, M-S Baristis⁶⁵, J.T. Barkeloo¹¹⁸, T. Barklow¹⁴⁵, N. Barlow³⁰, R. Barnea¹²⁴, S.L. Barnes^{36,36}, B.M. Barneu¹¹³, R.M. Barnett¹⁶, Z. Barnovska-Blenessy^{36c}, A. Baroncell¹¹³, and G. Barone²⁵, A.I. Barraton Navarro¹⁷⁰, F. Barretro⁵⁵, J. Barreiro Guimariaes da Costa⁵⁵, R. Bartoldus¹⁴⁵, A.E. Barton⁵⁷, P. Bartos¹⁴⁶⁶, A. Basaka¹²⁶, A. Barsett¹⁶⁷, S. Bartos¹⁴⁶⁶, A.Basak¹⁴⁵, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁵, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁵, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁵, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁶, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁶, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁶, P. Bartos¹⁴⁶⁶, A.Basak¹⁴⁶, P. Bartos¹⁴⁶⁶, P. Bartos¹⁴⁶ J. Barreiro Guimarães da Costa³⁵, R. Bartoldus⁴⁵, A.E. Barton⁷, P. Bartos⁴⁶⁶, A. Bassallev¹², A. Bassall¹⁰, Y. R.L. Bates⁵, S.J. Batistali, J. R. Batey³⁰, M. Battaglia¹³, M. Bauce¹³⁴, M.J. Bates¹³⁶, K. Bauce¹⁴⁵, H.J. Bates¹³⁶, M.D. Beattig¹⁵, T. Bauet²⁶, H.S. Bawa¹⁴⁵⁵, H. B. Beachm¹³, M.D. Beattig¹⁵, T. Beaut³⁵, H. Bates¹³⁶, M. Bettes¹⁴⁵, H. Beach³⁶, K. Becker¹²⁶, C. Becch⁴⁷, C. Bect³⁶, B. Becker³⁶, C. Beccru⁴⁸, A.J. Beddall³⁰⁶, A. Beddall³⁰⁶, V.A. Bedryakov⁶⁸, M. Bedognetti⁴⁰, G. P. Bec¹³⁰, T.A. Bermann³², A. Bellerive³¹, M. Bellomo¹⁵⁴, K. Belotskiy¹⁰⁰, N.L. Belyaev¹⁰⁰, O. Benryb⁵⁵, D. Bencherkroun¹³⁵, A. Bellerive³¹, M. Bellomo¹⁵⁴, K. Belotskiy¹⁰⁰, N.L. Belyaev¹⁰⁰, O. Benryb⁵⁵, D. Bencherkroun¹³⁶, K. Belotskiy¹⁰⁰, N.L. Belyaev¹⁰⁰, O. Benryb⁵⁶, K. Belotskiy¹⁰⁰, N.L. Belyaev¹⁰⁰, O. Benryb⁵⁶, D. Bencherkroun¹³⁶, K. Belotskiy¹⁰⁰, N.L. Belyaev¹⁰⁰, D. Bencherkroun¹³⁶, K. Belyaev¹⁰⁰, D. Bencherkroun¹³⁶, K. Belyaev¹⁰⁰, D. Bencherkrou¹³⁶, K M. Bender¹⁰², N. Benekos¹⁰, Y. Benhammou¹⁵⁵, E. Benhar Noccioli¹⁷⁹, J. Benitez⁶⁶, D.P. Benjamin⁴ M. Bender¹⁴⁷, N. Benkoss¹⁴, T. Bennamou¹⁴⁷, E. Bennar Noccoli¹⁴⁷, J. Bennar²⁴⁷, D.P. Berga⁴⁵, M. Benoit²⁵, J.R. Bensinger²⁴, S. Bentvelsen¹⁰⁹, L. Bereston¹²⁷, M. Beretta⁵⁰, D. Berga⁴⁵, E. Bergeaas Kuutman¹⁴⁸, N. Berger¹, L.J. Bergsten¹², J. Beringer¹⁶, S. Berfendis⁵⁷, N.R. Bernard G. Bernardi¹⁵³, C. Bernius¹⁴⁵, F.U. Bernlochner²⁴, T. Berry⁸⁰, P. Berta⁸⁶, C. Bertella⁵³, and S. Berlandis¹⁵⁵, S. Berlandis¹⁵⁶, S. Berlandis¹⁵⁷, S. Ber G. Bertoli^{148a,148b}, I.A. Bertram⁷⁵, C. Bertsche⁴⁵, G.J. Besjes³⁹, O. Bessidskaia Bylund^{148a,148} G. Bertoll^{1484,1489}, I.A. Bertram⁷, C. Bertsche⁵, G.J. Besjes⁷⁹, O. Bessidskaia Bylmd^{1484,1489}, M. Bessnef^{4,5}, N. Besson¹³⁵, A. Bethal⁶⁷, S. Bethke¹⁰³, A. Beval⁷⁷, J. Beyerl⁰³, R.M. Bianchi¹²⁷, O. Biebel¹⁰², D. Biedermann¹⁷, R. Bielski⁸⁷, K. Bierwagen⁸⁶, N.V. Biesuz^{128a,1280}, M. Biglietti¹⁵⁰⁹, T.R.V. Billoud⁶⁷, M. Bindl⁸⁸, A. Bingul²⁵⁰, C. Binil^{154,154}, S. Biondi^{72,229}, T. Bisanz⁸⁵, C. Bitrich⁴⁷, D.M. Biegraard⁴⁵, L.E. Black¹⁴⁵, K.M. Black²⁴, R.E. Blair⁶, T. Blazek¹⁴⁶, I. Bloch⁴⁵, C. Blocker²⁵, A. Blue⁵⁶, U. Blumenschein⁷⁹, Dr. Blunier⁵⁴, G.J. Bobbint¹⁰⁹,

V.S. Bobrovnikov^{111,c}, S.S. Bocchetta⁸⁴, A. Bocci⁴⁸, C. Bock¹⁰², D. Boerner¹⁷⁷, D. Bogavac¹⁰² VS. Bohrownikov^{111,C}, S.S. Bocchetta³⁴, A. Bocci⁴⁵, C. Boccl¹⁰⁷, D. Boernarel¹⁷⁷, D. Bogwarel¹⁰⁷, A.G. Bogdanchikov^{111,C}, S. Bohr¹⁸⁴, V. Boisvert³⁰, P. Bokanl^{65,4}, T. Bold¹¹⁴, A.S. Boldyre¹⁰¹, A.E. Bolz²⁰⁰, M. Bomben⁶⁵, M. Bona³⁷, J.S. Bomila¹¹³, M. Boonekam³¹³, A. Borissv¹⁵², G. Borissv¹⁵², J. Borteletta³², D. Bortoletta⁵², V. Bortolotto⁵²⁴, D. Bosscherin²²⁵, M. Bosman³¹, J.D. Bossio Sol²⁶⁷, J. Bourdeurl¹²⁷, E.V. Bontova-Tnacker²⁵, D. Bournelices³⁷, C. Bourdarios¹¹⁹, S.K. Boutle⁵⁶, A. Boweil¹¹³, J. Boyd²⁷, I.R. Boyko⁶⁸, A.J. Bozson¹⁰⁰, J. Bracink¹⁰, A. Brandt⁸, G. Brandt¹⁷⁷, O. Brandt⁶⁰⁶, F. Braten⁴⁵, U. Bratzler¹⁵⁵, B. Brau⁴⁹, J.E. Brau¹¹³, W.D. Breaden Madden⁹⁶, K. Braten⁴⁵, D. Bratzler⁵⁶, D. Bratzler¹⁶⁶, J. Brock³², R. Brock³³, G. Brock³¹, G. Brock¹¹⁶, S. Bressler¹ D.L. Brighin¹⁹, T.M. Bristow⁴⁹, D. Britzger⁶⁶⁰, I. Brock³², B. Brock³³, G. Brock³³, G. Brock³³, G. Brock³¹, G. Brock³¹, G. Brock³¹, G. Brock³¹, G. Brock³¹, G. Brock³¹, B. Brock³³, D. Braterstorn⁴², D. Braterstorn⁴², D. Braterstorn⁴², D. Braterstorn⁴¹, Brock³¹, B. Brock D.L. Briglin¹⁹, T.M. Bristow⁴⁹, D. Brittor⁴⁰, D. Brittger⁴⁰, I. Brock²³, R. Brock²³, G. Bronijmans³⁸, T. Brook³⁰, K. Brook³⁰, R. Brossl¹⁰⁰, J.H. Broughton¹⁹, P.A. Bruckman de Renstrom⁴², D. Brunck⁵⁰, M. Brouk⁵¹, G. Brunl²⁵, L.S. Brunl¹⁰⁷, S. Brunl⁵⁵, J.B. Brunl⁵⁰, M. Brusch¹²², N. Brussino¹²⁵, J. Brunch¹²⁵, J. Brunch¹²⁶, J. Brunch¹²⁶, J. Brunch¹²⁶, S. Brunl¹²⁶, J. S. Brunl¹⁰⁷, S. Brunl¹⁰⁷, M. Brusch¹²⁶, M. Brusch¹²⁶, R. Buchhol²¹⁶, A. Budgow⁴⁵, F. Buchrel³¹, B. Bryngemark⁴⁵, T. Buanes⁵¹, Q. Budick⁴⁷, J. Buchhol²¹⁶, M. Brusch¹²⁶, B. Buchl²¹⁶, D. Budick⁴⁷, J. Budick⁴⁷, J. Buchhol²¹⁶, A. Budick⁴⁷, J. Budick⁴⁷, J. Burdh¹²⁶, J. D. Busche¹²⁶, P. Buscherl⁶¹, J. Buscherl⁶¹, E. Buscherl²¹⁶, E. Buscherl²¹⁶, E. Buscherl²¹⁶, J. Buscherl²¹⁶, L. Buscherl²¹⁶, L. Buscherl²¹⁶, J. Cataltor¹³⁶, J. Campand¹³⁷, J. Campand¹³⁸, A. Camplan^{144,496}, A. Canplan^{144,496}, A. Canplan^{144,496}, A. Canplan^{14,496}, J. Catalt¹³⁶, J. Cataltor¹³⁶, J. Cata L. Carminati^{924,92}, R.M.D. Carney^{1264,126}, S. Carco¹¹⁸, E. Carquin³⁴⁰, S. Carra^{924,946}, G.D. Carrillo-Montoya²², D. Casall¹⁹, M.P. Casado¹³, J. A. Cashl¹⁶, M. Casolin³, D. W. Casper¹⁶⁶, R. Castelijn¹⁰⁹, V. Castillo Gimene¹⁷⁰, N.F. Castro^{1264,4}, A. Catilnaccio²², J.R. Catmore¹²¹, A. Cattai²², J. Caudon²², V. Cavaliere²⁷, E. Cavallar⁰³, D. Cavalli⁴⁶, M. Cavalli-Slorza¹³, V. Cavasimi ^{1264,1286}, E. Celebi³²⁰, F. Ceradnii^{1354,1356}, L. Cerda Alberto¹⁷⁰, A.S. Cenquira²³⁶, A. Chafaq^{137a}, D. Chakrobry¹¹⁰, L. Cerrito^{1354,1356}, F. Cerruti¹⁶, A. Cervelli^{222,225}, S.A. Cetin²⁰⁴, A. Chafaq^{137a}, D. Chakrobry¹¹⁰, L. Cerrito¹³⁰⁴Cas¹⁰, F. Cerrutti¹⁰, A. Cervell^{1224,229}, S.A. Cettin²⁰⁴, A. Chafag¹²⁴, D. Chakraboryt¹¹⁰, S.K. Chan³⁰, W.S. Chan¹⁰, Y.L. Chan²⁰⁴, P. Chang¹⁶⁶, J.D. Chapman¹⁰, D.G. Chardnol¹⁹, C.C. Chau³¹ C.A. Chavez Barajas¹⁵¹, S. Che¹¹³, A. Chegwidden⁹³, S. Chekanov⁶, S.V. Chekulaev¹⁶³⁴, G.A. Chelkov⁶³⁴, M.A. Chelstowska¹², C. Chen³⁵, C. Chen³⁷, H. Chen²⁷, J. Chen³⁵, J. Chen³⁸, S. Chen³⁵⁰, S. Chen¹²⁴, X. Chestowska¹²⁶, C. Chen³⁷, H. Chen²⁷, J. Chen³⁵, A. Cheplatov⁶⁵⁶, E. Chenrusshina¹³², R. Chertaoui El Moursli¹³⁷⁶, E. Cheu¹, K. Chenu⁶⁵, L. Chevallet¹³⁵, E. Cherrussh¹³⁶, M. Chevlatov et al. 7²⁷, ¹²⁷, ¹ E. Cheremushkina¹⁻⁹, R. Cherkaoui El Moursli^{1,30}, E. Cheu', K. Cheur, Y. L. Chevaller^{2,50}, V. Chiarda^{10,50}, G. Chiardil^{10,50}, G. Chioda^{10,50}, A. S. Chisholm²⁰, A. Chitan^{20,50}, Y.H. Chiu^{1,20}, M. Chizhov⁶⁶, K. Chol⁶⁴, A. R. Chonom¹⁷, S. Chouridou^{15,6}, Y.S. Chow¹⁰⁰, V. Christodoulou¹⁸, M. C. Chu^{20,30}, J. Chudohu^{12,0}, J. J. Chimard^{20,1}, J. J. Chiwastow^{15,14}, L. Chytal^{10,15}, D. Chica^{4,60}, V. Cindro I.A. Cioar²³, A. Cioci¹⁶, F. Criotto^{1064,106}, Y. L. Ghu^{17,15}, M. Chitar^{15,10}, A. Ciach²⁵, M. Cintar^{10,16,14}, A. Ciach²⁵, M. Ciata^{15,15}, A. Cioci^{16,16}, F. Cionto^{1064,108}, Y. Codal^{16,16,10,14}, C. Chu^{26,10,14}, C. A. Cocara^{7,33,35,35}, J. Cochran^{10,16}, B. Col^{18,8}, A.P. Col¹, J. Ciol²⁷, P. Conde Muido^{10,16,12,16}, M. Ciata^{15,16}, M. Ciata^{15,16}, M. Codal^{16,16,16,15}, Conde Muido^{10,16,12,16}, Col^{16,16,16,15}, P. Conde Muido^{10,16,12,16}, Chu^{21,16,16,16}, P. Col^{16,16,16,16}, J. Col^{16,16,16,16}, Chu^{21,16,16,16}, P. Col^{16,16,16,16}, J. Col^{16,16,16,16}, C. Conde Muido^{10,16,12,16}, Chu^{21,16,16,16}, C. Cocara^{10,16,16,16}, P. Col^{16,16,16,16}, C. Conde Muido^{10,16,12,16}, Chu^{16,16,16,16}, Chu^{16,16,16,16}, Chu^{16,16,16,16}, C. Conde Muido^{10,16,12,16}, Chu^{16,16,16,16}, Chu^{16,16,16,16,16}, Chu^{16,16,16,16}, Chu^{16,16,16}, Chu^{16,1} J. Contanta", L. Cotasurdo", B. Cole", A.P. Cotgn", J. Collot", P. Conde Muthor-Sector, E. Coniavitis⁴J, S.H. Connell⁴⁷b, I.A. Connelly⁴⁷, S. Constantinescu²⁸b, G. Conta²2, F. Convent A.M. Cooper-Sarkar¹²2, F. Correita¹⁷¹, K.J.R. Cornier¹⁶¹, M. Corradi¹³⁴a, ¹³⁴b, E.E. Corrigan⁴⁴, F. Corriveau^{90,o}, A. Cortes-Gonzalez³², M.J. Costa¹⁷⁰, D. Costanzo¹⁴¹, G. Cottin³⁰, G. Cowan⁸⁰ F. Confretaur - An Confessional and Conference a

M.J. Da Cunha Sargedas De Sousa^{128,1280}, C. Da Via⁶⁷, W. Dabrowski^{41a}, T. Dado^{146a}, S. Dahbi^{137e}, T. Da⁴², O. Dale¹⁵, F. Dallaire⁶⁷, C. Dallapiccola⁸⁹, M. Dam⁵⁹, J.R. Dandoy¹²⁴, M.F. Dancri³⁹, N.P. Dang^{176,e}, N.S. Dam⁸⁷, M. Danninger¹⁷¹, M. Dano Hoffmann¹³⁸, V. Dao³², G. Darbo^{33a}, S. Darmora⁸, A. Dattagupta¹¹⁸, T. Dauboey⁶⁷, W. Dave³², C. Davis⁶⁶, T. Davidek¹³¹, D. R. Davis⁶⁶, P. Boave⁶¹, I. Dawo⁶¹, H. Duson¹⁴¹, K. D. & R. K. et Asnundis⁶⁶, A. De Benedetti¹¹⁵, S. De Castro^{224,220}, S. De Cecco³³, N. De Groot¹⁶⁶, P. de Jong¹⁰⁹, H. De la Torre⁶³, F. De Lorenz⁶⁷, A. De Kartia⁸, D. De Pedici^{34a}, A. De Baroto¹⁵¹, U. De Kovis⁶⁸, J. De Foxol⁶⁸, J. De Pedici^{34a}, A. De Sancto¹⁵¹, D.V. Dedovich⁶⁸, N. Dehphanian³, I. Deligaard¹⁰⁹, M. Del Gaudid^{68,400}, J. Del Peso¹⁵, D. Delgovi¹¹⁹, F. Deliot¹³⁸, C.M. Delirszo⁴⁷, A. Del Kaput²¹, D. Plat²⁴, M. Della Peri^{106,100}, D. D. Deliot¹³⁸, C.M. Delirszo⁴⁷, A. Del Kaput²¹, D. Delgova¹¹⁹, F. Deliot³³, S. De Torrend³⁷, J. Delfaard¹⁴⁰, M. Del Gaudid^{68,400}, J. Del Peso¹⁵, D. Delgovi¹¹⁹, F. Deliot³³, S. Delfova²³, D. Plat³⁴, M. Della Peri^{106,100}, D. D. Deliot¹³⁶, S.P. Deliot³¹, S. De Cherend³⁷, J. Delfacet³¹, D. Plat³⁴, M. Della Peri^{106,100}, D. Della Viol²⁵, C. Delporte¹¹⁹, P.A. Delsart⁵⁷, D.A. DeMarco¹⁶¹, S. Denres¹⁷⁹, M. Demicher⁶⁸, S.P. Deniso¹¹³, D. Delgovi¹¹⁹, K. Detard⁴⁵, K. Dettend⁴⁵, K. Detterd⁴⁵, K. Detterd⁴⁵, K. Detterd⁴⁵, K. Detterd⁴⁵, K. Detterd⁴⁵, K. Detterd⁴⁵, M. Detwa⁴⁷, D. Del Verkun⁴⁷¹, S. Dhaliva⁴⁷, S. Dhaliva⁴⁷¹, D. Detterd⁴⁷¹, K. Detta⁴⁷¹, S. Datliva⁴⁷¹, S. Dhaliva⁴⁷¹, D. Dativa⁴⁷¹, D. Detterd⁴⁷¹, K. Detterd⁴⁷¹, S. Dativa⁴⁷¹, D. Detterd⁴⁷¹, S. Dativa⁴⁷¹, D. Detterd⁴⁷¹, Detterd⁴⁷¹, M. Detterd⁴⁷¹, K. Dette 5.1. Denisori D. Deterre⁶, K. Dettel⁶¹, M.R. Devesa³⁹, P.O. Deviveiros³², A. Dewhurst¹³³, S. Dhaliwaf, F.A. Di Bello²³, A. Di Ciaccio^{155,1356}, L. Di Ciaccio⁵, W.K. Di Clementi²⁴, C. Di Donato ^{106a,1086}, A. Di Girolama³², B. Di Micco^{156,1366}, R. Di Nardo²⁷, K. F. Di Perrillo⁵⁹, A. Di Simone³¹, D. Di Sipio¹⁶¹, D. Di Valentino³¹, C. Diacond⁸⁵, M. Diamond¹⁶¹, F.A. Dias³⁹, M.A. Diaz^{34a}, J. Dickinson¹⁶, E.B. Diehl⁹², J. Dietrich¹⁷, S. Díez Cornell⁴⁵, A. Dimitrievska¹⁶, J. Dingfelder J. Dickinson^{*}, E.B. Dienn^{*}, J. Diettin^{*}, S. Diez Comet^{*}, A. Diminterska^{*}, J. Diigeicue^{*}, P. Ditäž⁸, F. Ditta²⁸, F. Ditta⁸³, F. Diatas⁴⁵, T. Diobara⁴⁶, J. D. Dijuvsland⁶⁶, M.A.B. do Vale³⁶, M. Dobre²⁸⁰, D. Dodsworth²⁵, C. Doglioni⁸⁴, J. Dolejsi¹³¹, Z. Dolezal¹³¹, M. Donadelli²⁶⁴, S. Donati^{1264,1266}, J. Donini³⁷, J. Dopke¹³³, A. Doria^{106a}, M.T. Dova¹⁴, A.T. Doyle⁵⁶, E. Drechsler⁵⁸, 5. Doniau T. D. Doniau T. Doniau A. Doniau A. H. Dova A. A. LOyle, E. Larcuster E. Dreyer 44, M. Dris¹⁰, Y. Du⁴⁸, J. Duarte-Campderros¹⁵⁵, F. Dubinin⁴⁸, A. Dubecul¹⁷⁵, E. Duchovni¹⁷⁵, G. Duckeck¹⁰², A. Duccurthial⁴⁸, O.A. Ducq⁴⁷⁰, P. Dudal⁴⁰⁹, A. Dudarev²³, A. Chr. Dudder⁴⁶, E.M. Duffield¹⁶, L. Duflor¹¹⁹, M. Duhrssen²⁷, C. Dulsen¹⁷⁷, M. Dumancie¹⁷⁷, A. E. Dunitru²³⁰⁴, A.K. Duncau⁵⁵, M. Dufford⁴⁰⁶, A. Dupertin⁸, H. Duran Yildiz⁴⁴, M. Düren⁵⁵ A.E. Dumitriu^{28a,4}, A.K. Duncan⁵⁶, M. Duntord⁶⁰, A. Duperrin³⁸, H. Duran Yildiz⁴, M. Duren⁵⁵, A. Duregish¹⁴, ¹⁶, Dyndal⁴⁵, B.S. Driedziz⁴², C. Eckardt⁵⁵, K.M. Ecker¹⁶⁸, R.C. Edgar⁹⁷, T. Eifert⁷², G. Eigen¹⁵, K. Einsweiter¹⁶, T. Ekkelo⁴⁶⁸, M. El Kacimi ¹³⁷, R. B. Elkosseil⁴⁶, Y. Ellajosyula⁴⁶, M. Ellert⁴⁶⁸, F. Ellinghaus¹⁷⁷, A.A. Elliot¹²⁵, R. Bishseuzer²⁷, M. Elsins²², D. Eneityanov¹³³, Y. Enarl¹⁵, J. S. Emiderl⁴⁶, J. Erdinann⁴⁶, A. Ereditatal³⁴, S. Errede¹⁶⁹, M. Escalier¹¹⁹, C. Eccobar¹⁷⁰, A. E. Billot¹²², O. Estada Dszto⁷⁷, A. J. Elliss²², J. Enderl⁴⁶, M. Escalier¹¹⁹, C. Escobar¹⁷⁰, B. Esposito⁷⁹, O. Estada Dszto⁷⁷⁰, A. J. Elmor¹³⁵, H. Sma⁴⁶, A. Erchilot¹³⁵, M. England¹³⁴, J. Faltova¹³¹, J. B. Engla⁴⁵, J. Fardhal⁴⁶, G. Facinis¹⁸¹, R.M. Fachtruttinov¹³², S. Falciano¹³⁴, J. Faltova¹³¹, J. Bartova¹³⁴, P. Erastl⁵⁵⁰, P. Fassil⁵⁵⁰, P. Fasto⁵⁵⁰, J. Fasto⁵⁵⁰, W. Fasson¹⁴¹, J. Faltova¹⁵², N. Fedork¹⁷¹, M. Feickn⁷⁷¹, M. Feiton⁵⁶⁰, W. Fedork⁷¹⁷, M. Feickn⁷⁷¹, S. Friglio¹³⁵, P. Feilo⁵⁶⁰, W. Festo⁵⁶¹, W. Fredo⁵⁶¹, W. Fedork⁷¹⁷, M. Feickn⁷⁷¹, S. Friglio¹³⁵, P. Fasto⁵⁷⁵, P. K. M. Fraid, J. Fanto⁵⁵¹, W. Fasto⁵⁷⁵, W. Fraid¹⁵⁵, M. Fraid¹⁵⁵, W. Fedork⁷¹⁷, M. Feickn⁷⁷¹, M. Feiton⁵⁶⁰, C. Fasto⁵⁷⁵, M. Fraid¹⁵⁵, M. Fraid⁵⁷⁵, M. Fraid⁵⁷⁵, M. Fraid⁵⁷⁵, M. Fraid⁵⁷⁵, M. Fasto⁵⁷⁵, W. Fast⁵⁷⁵, W. Fast⁵⁷⁵, W. Fraid⁵⁷⁵, M. Frai M. Falcet Otamiem, J. A. Faradeo, M. Franke, J. Falgar, E. J. Feng²⁸, M. S. Fenton⁸⁶, C. Feng²⁸, M. S. Fenton⁸⁶, C. Feng²⁸, M. Fenton⁸⁶, A. B. Ferton¹⁰⁶, A. B. Ferton¹⁰⁶, J. Fertando⁸⁷, A. Fertando⁸⁷, A. Fertando⁸⁷, A. Fertando⁸⁷, A. Fertando⁸⁷, A. Fertando⁸⁷, A. Firthau¹⁰⁸, M. Fincke⁴⁷⁰, D. Ferton²⁷⁰, C. Fertetl⁹⁷, F. Fiedler⁸⁶, A. Filipéli⁹⁷, F. Findlau¹⁰⁸, M. Fincke-Keele⁴⁷⁷, K.D. Finell¹²⁴, M.C.N. Fiolanis^{128a,128c,r} L. Fiorinl¹⁷ A. Filipéti²⁶, F. Filthaut¹⁰⁸, M. Fincke-Keeler¹⁷, K.D. Finelli³⁴, M.C.N. Fiolhas^{128a,128a,*}, L. Fiorin, C. Fischer¹⁷, N. Kocher¹⁸, J. E. Kortsman²⁰, R. M. Fietcher¹²⁴, T. Fischer¹⁷⁰, N. C. Fischer¹⁸, A. G. Forcs¹²⁴, L. R. Fiores Castillo⁵⁰a, N. Formis¹³, G. Frorcolin⁴⁷, A. Formis¹³⁸, F.A. Forster¹³, A. Forti¹⁸⁷, A.G. Foster¹⁹, D. Forancis¹³⁹, H. Foat⁷⁵, S. Fracchial⁴¹, P. Francavilla^{126a,1286}, M. Franchill^{232,230}, S. Franchino⁶⁰a, D. Francis³³, L. Franconi M. Franklin⁴⁹, M. Frate⁴⁶, M. Frater¹²⁴, J.A. Forst¹⁹⁷, J.A. Fressard-Batraneau¹³, J. Fusiyas¹⁰⁴, J. Foster¹⁰, O. Gabizon¹⁵⁴, A. Gabriell^{1252,236}, A. Gabriell¹⁶, G.P. Gach^{41a}, S. Gadanst⁴⁰, G. Gagliard^{1253,236}, D. Gragon⁶⁷, C. Galel⁴⁶, B. Galhas^{1264,236}, E.G. Gangon⁶⁷, C. Galel⁴⁶, B. Galhas^{1264,236}, E.G. Gangon⁶⁷, C. Galel⁴⁶⁴, B. Galhas^{1264,236}, B. Galas¹²⁶, B. Galhas¹²⁶, Z. B.J. Gallos¹²⁹, B. Gallas¹²⁹, B. Gallas¹²⁹, B. Gallas¹²⁹, B. Gallas¹²⁹, B. Gallas¹²⁹, S. Galos¹⁴⁵, P. Gallus¹³⁹, C. Gallas¹²⁹, K. Gallas¹²⁹, K. Gan¹³, S. Ganguly¹⁷⁵, Y. Gao⁷⁷, Y. S. Gal^{45,8}, E.G. Calas¹⁴⁵, K. Gan^{145,8}, K. Gan^{145,8}, C. Gallas¹²⁹, K. Gallas¹²⁹, K. Gallas¹²⁹, K. Gallas¹²⁹, K. Gallas¹²⁹, K. Gallas¹²⁹, K. Gan^{145,8}, K. Ga

F.M. Garay Walls^{34a}, C. García¹⁷⁰, J.E. García Navarro¹⁷⁰, J.A. García Pascual^{35a}, M. Garcia-Sciv F.M. Garay Walls⁴⁴, C. García¹⁰⁷, J.E. García Navarro¹⁰⁷, J.A. García Pascula³⁵⁸, M. García-Sciver, R.W. Gardne³³, N. Garclil¹¹³, O. Garonne¹¹³, K. Gasnikova⁶⁵, A. Gandiello³³, S.B. G. Gandio¹³, H.J. Garvinehko⁸⁵, C. Gayl¹¹, G. Gaycken¹²³, E.N. Gazis¹⁰, C.N.P. Get¹³³, J. Geisen⁸⁶, M. Geisen⁴⁶, M.P. Geisel⁴⁰⁶, K. Gellersteu¹⁴disl⁴⁸, C. Cemmus⁵⁵, M.H. Gense⁷⁷, C. Geng²⁷, C. Genlit¹⁵443,¹⁵, C. Gentosol³⁵⁶, S. Gozgl²⁸⁴, P. Gerhaudol³³, G. Geisen⁴⁶, S. Ghasem¹⁴³, M. Ghaneimat³³, G. Giacobè²²⁵, S. Gagul³⁴⁴, M. Giangicamo^{225,29}, P. Giannet¹¹²⁶, S. M. Gione⁴⁰, M. Giangi M. Giacheisel⁴⁶, D. Gillberg³¹, G. Gilles¹⁷⁷, D.M. Giangrin^{15,44}, M.P. Giordani ^{164,165}, E.M. Giorgl²²⁵, C. García ^{164,165}, C. Garcia⁴⁵, B. J. Garcia, ^{164,165}, C. Garcia⁴⁵, B. J. Garcia, ^{164,165}, C. Garcia⁴⁵, B. Carrali, ^{164,165}, C. M. Carla, ^{164,165}, C. Garcia⁴⁵, B. Carla¹⁵, C. Garcia⁴⁵, C. Garcia⁴⁵, C. Garcia⁴⁵, C. Garcia⁴⁵, C. Garcia⁴⁵, G. Garcia⁴⁵, C. Garcia⁴⁵, G. Garcia⁴⁵ M. Olicinnesde", D. Glinerde", G. Glingianelli of Change, The Control and Control of S. Gonzalez-Sevinar -, L. Goossense, - P.A. Gordonnov, -, Ir.A. Gordon, -, D. Gorlin, -, E. Gorlin, - S. Gorlin, - A. Gordon, - D. Gorlin, -, E. Gorlin, - C. Goslin, B. G. L. Goskins, E. G. Goudell ¹⁹, D. Goujdami, ¹³⁷, A. G. Goussiou, ¹⁴⁰, N. Govende-^{1470, ar,}, C. Goy⁵, E. Gorzani¹⁵⁴, I. Grabowska-Bold⁴¹, P.O. Gradin, E. C. Granhan, ⁷¹, J. Gramling, ⁴⁶⁰, E. Gramstal, ²¹, S. Grancagnolo, ⁷¹, V. Gratchev, ¹⁵⁵, P. Gravin, ²¹, C. Gray, ⁵¹, C. Grab, ⁵¹, C. Grab, ⁵¹, C. Grab, ⁵¹, C. Grab, ⁵¹, G. Gravin, ⁵¹, I.M. Gregor², P. Grenier¹⁵, K. Grevitov³, J. Grittihis³, A.A. Grillo¹⁵, K. Grimm¹⁵, S. Grittslin¹⁵, P. Gritslin¹⁵, R. Grittslin¹⁵, R. Grittslin¹⁵, R. Grittslin¹⁵, R. Grittslin¹⁵, R. Grittslin¹⁵, R. Gratslin¹⁵, J. Gross¹⁶, E. Gross¹⁷, J. Gross¹⁸, E. Gross¹⁷, J. Gross¹⁸, E. Gross¹⁷, J. Gross¹⁸, R. Grittslin¹⁵, S. Guidon¹⁵, G. Gross¹⁸, Z. J. Grouf¹⁸, G. Gross¹⁸, Z. J. Gross¹⁸, S. Ludo¹⁵, S. Guidon¹⁵, S. Guidon¹⁵, J. Guest¹⁸, S. Guidon¹⁵, S. Guidon¹⁵, S. Guidon¹⁵, J. Guest¹⁸, P. Guterraru¹⁵, P. Guterraru¹⁵, P. Guterraru¹⁵, N. G. Guttarraru¹⁵, P. Guterraru¹⁵, J. Guterraru¹⁵, M. Gross¹⁸, J. G. Halled¹⁶, S. Hag¹⁶, S. Hag¹⁶, S. Hag¹⁶, S. Hallo¹⁵, S. Hag¹⁶, J. Hanno¹⁶, J. Guterraru¹⁵, J. Guterraru¹⁵, J. Guterraru¹⁵, J. Hamal¹⁶, J. Hanno¹⁷, J. Hansle⁷, K. Hannache¹⁷, J. Hansle¹⁸, S. Hall¹⁵, J. Hansle¹⁸, S. Hall¹⁵, J. Hansle¹⁸, S. Hall¹⁵, J. Hansle¹⁸, J. Hansle¹⁸, S. Hall¹⁵, J. Hansle¹⁷, S. Hansle¹⁸, J. Hansle¹⁸, S. Hansl¹⁵, J. Hansl¹⁶, S. Hansl¹⁵, J. Hansl¹⁶, J. Hansl¹⁶, S. Hansl¹⁶, J. Hansl¹⁶, J. Hansl¹⁷, J. Hansl¹⁷, K. Hansl¹⁶, J. Hansl¹⁶, Ph. Gris³⁷, J.-F. Grivaz¹¹⁹, S. Groh⁸⁶, F. Gross¹⁷⁵, J. Grosse-Knetter⁵⁸, G.C. Grossi⁸², Z.J. Grout⁸¹ M.R. Hoeferkamp¹⁰⁷. F. Hoenig¹⁰². D. Hohn²³. D. Hohoy¹¹⁹. T.R. Holmes³³. M. Holzbock¹¹ M.K. FOREFAMIP, F. FOREIR, D. TORIN, D. TORIN, J. L. FOREFAMIP, A. FOREFAMIP, J. F. HODENKA, S. M. HOLZNA, S. M. HOLZNA, S. K. HOLM, D. H. HONG, M. J. HONG, J. M. HONG, M. J. HONG, J. H. HONG, J. H. HONG, M. J. HONG, J. H. HONG, J. HONG, J. H. HONG, J. HONG, J. HONG, J. H. HONG, J. HONG, J. F. Huegging²³, T.B. Huffman¹²², E.W. Highes³⁸, M. Huhtinen²³, R.F.H. Hunter³¹, P. Huo¹⁵⁰, A.M. Hupe³¹, N. Huseynov^{64,5}, J. Huston⁵⁰, J. Huth⁵⁹, R. Hyneman²⁷, G. Lacobtacc³², G. Lakovidii, I. Dragimovit⁴³, L. Iconomidou-Fayard¹¹⁹, Z. Hirsis¹¹⁷⁶, P. Benge³², O. Logokin^{40,46}, R. Juguch¹⁵⁷ i⁵², G. Iakovidis²¹

T. Itzawa¹⁷⁴, Y. Ikegami⁴⁹, M. Ikeno⁶⁹, D. Iliadis¹⁵⁶, N. Ilic¹⁴⁵, F. Iltzsche⁴⁷, G. Introzzi^{123k,1236}, M. Iodice¹³⁶⁸, K. Iordanidov³⁸, V. Ippolito^{134k,136}, M.F. Isascon¹⁴⁸, N. Ishijima¹³⁰, M. Ishino¹⁵⁷, M. Ishitoku¹³⁵, C. Isasev¹²⁷, S. Ishi²³⁰, F. Iod⁴⁴, J.M. Inteb Ponce⁵³, R. Ippa^{125,1450}, H. Iwasak¹⁴⁹, J.M. Izen⁴⁴, V. Izzo¹⁰⁶⁸, S. Jabbar², P. Jackson¹, R.M. Jacobs²³, V. Jair², G. Jakel¹⁷⁷, K.B. Jakob³⁶, K. Jakobs⁵¹, S. Jakobsen⁶, T. Jakoubek¹²⁹, D.O. Jamin¹¹⁶, D.K. Jams⁴², R. Jansky⁵², J. Janssen²³, M. Janus⁵⁴, P.A. Janus⁴⁴, G. Jarlskog⁴⁸, N. Javado^{46,64}, T. Javirek³¹, M. Jawukova²⁷, F. Jeanneau¹⁸ M. Janus³⁸, P.A. Janus^{41a}, G. Jarlskog³⁴, N. Javadov^{68,b}, T. Javárek³¹, M. Javurkova⁵¹, F. Jeanneau¹³⁸, L. Jeany¹⁶, J. Jejelava^{24kaar}, A. Jelinska¹⁷³, P. Jenn^{17,aar}, C. Jeske¹⁷³, S. Jézéque⁷, H. Ji¹⁷⁵, J. Jia²⁸⁰, J. Jiane³⁶, Z. Jiang^{45,C}, J. Jiang^{45,C}, Z. Jiang^{45,C}, Z. Jiang^{45,C}, Z. Jiang^{45,C}, Z. Jiang^{45,C}, Z. Johnson¹⁴⁰, A. Jianz¹²⁶, M. Jiane^{17,25}, P. Johansson¹⁴¹, K.A. Johns⁷, C.A. Johnson⁴⁶, M.J. Johnson¹⁴⁰, K.Jonovan¹⁴⁰, H. Jivan^{167,C}, P. Johansson¹⁴¹, K.A. Johns⁷, C.A. Johnson⁴⁶, M.J. Johnson¹⁴⁰, K.Jonovan¹⁴⁰, H. Jivan^{147,C}, P. Johansson¹⁴¹, K.A. Johns⁷, C.A. Johnson⁴⁶, M.J. Johnson¹⁴⁰, K.Jonevan^{144,143,48}, R.W.L. Jone²⁵, S.J. Jone²⁵¹, J. Jione²⁵¹, J. Joneg²⁷¹, J. Jongenann⁵⁴⁰, P.M. Kagan¹¹³, M. Kagan¹⁴⁵, S.J. Kahl⁹⁸, T. Kajl¹⁷⁴, E. Kajomovitz¹⁵⁴, C.W. Kalderof⁸⁴, A. Katuza^{86,0}, S. Karafo⁴⁶, K. Kameshchikov¹⁵², L. Kanji¹⁵⁷, Y. Kano⁵⁵¹, V. A. Kantserov¹⁶⁰, J. Kanzak¹⁶⁹, B. Kaplan¹¹², L.S. Kaplan¹¹⁶, D. Kar^{146,C}, K. Karakoatsa¹⁰, N. Karastahi¹⁵⁷, A. Kare³¹, J. Katzy⁴⁵⁴, K. Kasshatn¹⁴⁴, K. Kaswaha¹⁷⁶, C. Kawamoto¹⁵⁷, G. Kava⁵⁵⁷, J. Katzy⁴⁵⁴, K. Kasshatn¹⁴⁴, K. Kawaato⁷⁰, K. Kawage⁷³, J. Kawamoto¹⁵⁷, G. Kavamara³⁶, P. Katzy⁴⁵¹, K. Kasshatn¹⁴⁴, K. Kawaad⁷⁰, K. Kawaato⁷¹⁵, J. K. Karakotsa¹⁵⁷, C. Kato⁷⁷, J. Katzy⁴⁵⁴, K. Kesehat¹⁷⁴, R. Kehed⁴⁷, J. S. Keller³¹, B. Keller⁴¹⁰, J. Kentsehat¹⁶⁷, R. Kacya⁵⁸, M. Khodinov^{110,67}, K. Kary⁵⁷, J. Katzy⁴⁵⁴, K. Kesehat¹⁷⁴, R. Kehed⁴⁷⁰, J. S. Katzy⁴⁵⁵, J. Keller⁴¹⁰, B. Keller⁴¹⁰, J. Kentsehat¹⁷⁰, R. Kacy⁵⁸, M. Khodinov^{110,67}, K. Kats⁴⁵, K. Katshata¹⁶⁴, K. Kesehat¹⁷⁵, R. Kats²⁷, J. Kendy⁴⁵, K. Katshat⁴⁴⁰, K. Kesehat¹⁷⁵, R. Katshat^{110,6}, J. Kende¹⁶⁰, F. Khali^{17,6}, J. Kende¹⁶⁰, J. Kende¹⁶⁰, F. Khali^{17,6}, J. Kende¹⁶⁰, T. Khool^{17,6}, K. Khoinov^{110,6}, J. Khool^{17,7}, K. Khoinov^{110,6}, A. Khoinov^{110,6}, K. Khoinov^{110,6}, K. Khoinov^{110,6}, K F. Kahil-Zada¹⁷, A. Khano¹⁰, A.G. Kharlamov^{11,Le}, T. Kharlamov^{11,Le}, A. Khodinov¹⁰, T.J. Khoo⁵⁷, V. Khovanskiy⁹⁹, F. Kharmov⁸⁵, J. Khubua²⁶, are, S. Kido⁷⁰, M. Kiehn²², C.R. Kilby⁸⁰, H.Y. Kim³, S.H. Kim¹⁶⁴, Y.K. Kim³³, N. Kimura¹⁶⁷, 16⁶⁷, O.M. Kind¹⁷, B.T. Kim⁷⁷, D. Kirchmeie⁴⁷, J. Kirk¹³³, A.E. Kiryun¹¹⁰, T. Kishim⁷⁵, D. Kirchweis⁴⁶, E. Kladiva¹⁴⁶⁶, T. Klapdor-Kleingrothaus⁵¹, M.H. Klein⁹², M. Klein⁷⁷, U. Klein⁷⁷, K. Kleinknecht⁸⁶, P. Klimek¹¹⁰ 1. Kapour-Kleingtoniats**, M.I. Keller*, M. Keller*, O. Keller*, K. Kellmaretle*, F. Kullexe⁴⁰, A. Klimento²⁷, R. Klingenberg⁴⁶*, T. Klingl³, T. Klioutchikova³², F.F. Klitzer⁴⁰, E.-E. Kluge⁴⁰, P. Kluti⁴⁰, S. Kluth⁴⁰, E. Kneringer⁴⁵, E.B.F.G. Knoops⁸, A. Knue⁵¹, A. Kobayashi¹⁵⁷, D. Kobayashi⁷³, T. Kobayashi¹⁵⁷, M. Kobel⁴⁷, M. Kocian¹⁴⁵, P. Kodyi³¹, T. Koffas³¹, E. Koffeman¹⁰⁵ D. Kodyasali T. Kolovjasali A. Koroci A. Koroci A. Korosi A. Korosi A. Korosi K. Ko S. Koperny¹⁴⁴, K. Korcyl⁴², K. Kordas¹⁵⁵, A. Korn⁴⁵, I. Korollova¹⁵, E. V. Korolkova¹⁴¹, O. Kortner¹, S. Kortne¹⁰³, T. Kosek¹³¹, V. Kostyukhin²³, A. Kotwal⁴⁵, A. Kotwal⁴⁵, A. Kotwal⁴⁵, A. Kotwal⁴⁵, A. Kotwal⁴⁵, A. Kotwal⁴⁵, K. Kotwalewika⁴⁷, R. Kowalewski¹⁷, TZ. Kowalski¹⁸⁴, C. Koztasi¹⁷⁵, W. Kozanecki¹³⁸, A. Kozanecki¹³⁸, D. Krasnopevtsev¹⁰⁰, M. Krassr³⁶, A. Krasznahorka³², D. Krausu⁶⁰, J. A. Krasznahorka³², D. Krasnopevtsev¹⁰⁰, M. Krassr³⁶, J. K. Krasznahorka³², D. Krausu⁶¹⁵, J. K. Kreutzleidt⁵⁵, P. Krieger¹⁶ A. Krassnahorkay⁵⁶, D. Krauss¹⁰⁰, J.A. Kremer¹⁴⁴, J. Kretzschmar¹⁷, K. Kreutzfeldt³², P. Krieget³⁴, K. Krizka¹⁶, K. Kroeninger¹⁶, H. Kroha¹⁰, J. Kroll²⁷, J. Kroll²⁷, J. Kroll²⁷, J. Kroll²⁷, J. Kroll²⁷, J. Kroll²⁷, S. Kuchu²⁷, J. Krust¹⁴, S. Kuchu²⁷, J. Krust¹⁴, S. Kuchu²⁷, J. Krust¹⁶, K. Kuget¹⁰⁰, F. Kucget¹⁷⁰, T. Kuńl²⁷, V. Kukhu¹⁶⁰, Y. Kukhu¹⁶¹, Y. Kuchku¹⁵, Y. Kukhu¹⁶¹, Y. Kukhu¹⁵¹, Y. Kukhu¹⁵², Y. Kukhu¹⁵², Y. Kukhu¹⁵², Y. Kukhu¹⁵², Y. Kukhu¹⁵⁴, Y. Kukhu¹⁵⁵, Y. Kukhu¹⁵⁴, Y. Kukhu¹⁵⁵, Y. Ku¹⁵⁵, Y. Kukhu¹⁵⁵, Y. Kukhu¹⁵⁵, Y. Kukhu¹⁵⁵, Y. Ku¹⁵⁵, Y. Ku M. Kurz^{Ler}, J. Kvita^{11,1}, I. Kwan^{12,4}, A. La Kosa^{10,5}, J. La & Kosa Navarro⁵⁶, L. La Kotfonda^{16,40,60}, F. La Ruffa^{40,40}, C. Lacastaff, F. E. Lacavil^{3,20}, H. D. P.J. Lack¹¹, H. Lackerl⁷, D. Lacourl^{3,4} E. Labygin⁴⁰, R. Laftorg^{4,5}, S. Laf³⁸, S. La^{10,40}, S. La^{10,40}, P. D. J. Lack¹¹, H. Lackerl^{7,1}, D. Lacourl^{3,40}, R.J. Landon^{9,40}, M.C. Lanterman^{7,40}, S. Laf^{40,40}, J. C. Lang¹¹, R.J. Langenberg^{20,4}, A.J. Lankford^{16,60}, F. Lami^{7,40}, K. Lantzsch^{21,4}, A. Lanzel^{12,40}, A. Lapertos^{3,42,40}, J.F. Laporte^{13,40}, T. Lardyt^{41,40}, T. Land^{14,40,40}, P. Lavget^{41,40}, T. Land^{14,40,40}, P. Lavget^{41,40,40}, P. Lavget^{41,40,40,40}, P. Lavget^{41,40,40,40}, P. Lavget^{41,40,40}, P. Lavget^{41,40,40}, P. Lavget^{41,40,40,40}, P. Lavget^{41,40,40,40</sub>, P. Lavget^{41,40,40,40</sub>, P. Lavget^{41,40,}}}

T. LeCompte⁶, F. Ledroit - Guillon⁷⁷, C.A. Lee²⁷, G.R. Lee³⁴, S.C. Lee¹⁵³, J. Lee⁹, B. Leikbyre⁶⁹, M. Leikbyre¹⁷², F. Leggerl¹⁶, C. Lenggut¹⁶, G. Lehmann Mitori²⁵, W.A. Leighe¹⁷⁵, A. Leisou¹⁵, M.A.L. Leiti²⁶⁴, R. Leitner¹³¹, D. Leilouch¹⁷⁵, B. Lenmer⁵⁸, K.J.C. Leney⁶¹, T. Lenz²³, B. Leuri²³, R. Leone⁷, S. Leone¹²⁵⁶, C. Leonidopoulos⁴⁹, G. Lerner¹⁵¹, C. Leroy⁶⁷, R. Les¹⁶¹, A.A. J. Lessge¹³⁶, G.G. Leste⁷⁶, M. Levcheno¹²⁵, J. Levko⁹⁶, D. Levin⁶⁷, J. Levin⁶⁷, J. Levin⁶⁷, J. Levin⁶⁷, J. Levin⁶⁷, J. Levin⁶⁷, J. Levin⁶⁷, B. Levin⁶⁷, J. Lin⁶⁷, K. Lin⁶⁸, K. Lin⁶⁸, J. Lin⁶⁸, K. Lin⁶⁸, M. Lin⁶⁸, J. Levin⁶⁷, K. Lin⁶⁸, K. Lin⁶⁸, K. Lin⁶⁸, K. Lin⁶⁸, K. Lin⁶⁸, J. Lin⁶⁷, Levin⁶⁷, Levin⁶⁷, Levin⁶⁷, Levin⁶⁷, Levin⁶⁷, K. Lin⁶⁸, L. Lin⁶⁷, Levin⁶⁷, J. Levin⁶⁷, Levin⁶⁷ A. Lister", A.M. Litte", B. Lu", H. Lu", H. Lu", J.K.K. Lu", J.B. Lu", K. Lu", M. Lu", P. Liu¹⁶, Y.L. Lu³⁶, Y. Lu³⁶, M. Livan¹²³L³²⁴, A. Lleres", J. Liorente Merino⁵⁵, S.L. Lloyd⁷⁹, C.Y. Lo⁵⁸, F. Lo Sterzo⁶, E.M. Lobedzinska⁶, P. Loch⁷, F.K. Loebinge³⁷, A. Loesle⁵¹, K.M. Loev²⁵ T. Lohse¹⁷, K. Lohwasser¹⁴¹, M. Lokajicek¹²⁹, B.A. Long²⁴, J.D. Long¹⁶⁹, R.E. Long⁷⁵, L. Longo^{764,76} T. Lohse¹⁷, K. Lohwasser¹⁴¹, M. Lokajicek¹²⁹, B.A. Long²⁸, J.D. Long¹⁰⁸, R.E. Long²⁵, L. Long²⁰, K.A. Longer, N. Long²⁵, H. Long²⁷, H. Long²⁷, H. Long²⁷, H. Long²⁷, H. Long²⁷, H. Long²⁷, H. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, J. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, J. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, J. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, J. Lu²⁰, N. Lu²⁰, Y. Lu²⁰, N. A. Mann¹⁰², A. Manousos³², B. Mansoulie¹³⁸, J.D. Mansour^{35a}, R. Mantifel⁹⁰, M. Mantoani⁵¹ A. Mann¹⁰², A. Manousss²², B. Mansoulic¹³⁸, J.D. Mansoun³⁵⁸, R. Mantifel⁷⁰, M. Mantoan⁵⁸, S. Marzon^{144,396}, G. Marceca²⁹, L. March³², I. Marches²¹², G. Marchion¹³³, M. Marcisowsky¹²⁹, C. A. Marin Tobon²², M. Marjanovic⁷¹, D. E. Marley²², F. Marcoguin²³⁴, Z. Marcisowsky¹²⁹, M. UF Martensson¹⁶⁸, S. Marti-Garcia¹⁷⁰, C.B. Martin¹¹¹, T.A. Martin¹⁷³, V.J. Martin⁸⁹, B. Martin di La atori¹⁵, M. Marting¹¹³, S. Martin¹²¹, W. J. Martin¹¹³, T. Martin¹⁷³, V.J. Martin⁸⁹, S. Marti-Laugh¹³³, V.S. Martoin²³⁶, A.C. Martyniuk⁸¹, A. Marzin²², L. Masetti⁸⁶, T. Mastinnol⁵⁷, R. Mastinnisto⁸⁶, J. Mastin⁸⁷, M. Mastrondrez⁸⁵, S.J. Matchel⁷⁷, D. Mastrondrez⁸⁶, S.J. Matchel⁷⁷, D. Mastinol⁷¹⁶, R. Mastinnisto⁷¹⁶, C. Mastrinol⁷¹⁶, R. Mastinnisto⁷¹⁷, D.A. Mastrondrez^{111,c}, L.H. Mason⁷¹, L. Massa¹³⁵³, D.⁸⁹, P. Mastrandrez⁸, S.J. Matchel⁷⁷, D. Mastrinol⁷¹⁶, S.J. Matchel⁷⁷, D. Mastrinol⁷¹⁶, S.J. Matchel⁷⁷, D. Mastrinol⁷¹⁶, C. Matchel⁷⁷, D. Mastrinol⁷¹⁶, S.J. Matchel⁷¹⁷, D. Mastrinol⁷¹⁶, D. Matchel⁷¹⁷, D. Mastrinol⁷¹⁶, S.J. Matchel⁷¹⁷, D. Mastrinol⁷¹⁶, J. Matchel⁷¹⁷, Matchel⁷¹⁷, J. Matchel⁷¹⁷, J. Matchel⁷¹⁷, J. Matchel⁷¹⁷, D. Matchel⁷¹⁸, J. Matchel⁷¹⁷, D. Matchel⁷¹⁸, J. Matchel⁷¹⁸, D.A. Maximov^{111,6}, R. Mazini^{1,6}, J. Maznas^{1,6}, S.M. Mazza^{1,7}, N.C. Mc Fadden¹⁰⁷, G. Mc Goldrich^{11,6}, S.P. Mc Kee², A. McCam², T. G. McCarthy¹⁰, L. L. McClymont³¹, E.F. McDonald⁹¹, J.A. Mcfayden²², G. Mchedildze⁵⁸, M.A. McKay⁴³, S.J. McMahou¹³³, P.C. McNamar⁹⁰, G.J. McNicol¹¹³, R.A. McFebreson^{172,67}, Z.A. Mcadousy⁸⁰, S. Mcehan¹⁴⁰, T.J. Megy⁵¹, S. Mehihas¹⁰², A. Mehta⁷⁷, T. Meideck⁵⁷, K. Meier^{60a}, B. Meirose⁴⁴, D. Melini^{170,67}, B.R. Mellado Garcia¹⁴⁷⁶, J.D. Mellemthin³⁶, M. Melo^{164a}, F. Meiron¹⁴, A. McEze²³, S.B. Menary⁸⁷, L. Meng⁷⁷, X.F. Neng⁷², A. Mengarell¹⁵², Z.S. Menke¹⁰⁰, E. Mcon^{300,406}, S. Mcgrelmeyer¹⁷, C. Mertassino¹⁵, P. Merruno⁵², L. Mercol^{166a}, C. Mercon⁴³⁴, F.S. Merrit³³, A. Messini^{154,154}, Metraclife S. Matzl¹⁶⁰, C. Menar¹³⁵, I. Mawal¹³⁶, I. Mawal¹³⁶, I. Mawal¹³⁶, I. Masun¹³⁶, H. Meson⁴⁰⁰, H. Maszar¹⁰⁰, H. Maszar¹⁰⁰, Thesehvanc⁴⁰ Metcalfe⁶, A.S. Mete¹⁶⁶, C. Mever¹²⁴, J-P. Mever¹³⁸, J. Mever¹⁰⁹, H. Mever Zu Theenhausen^{60a} J. snecume , A.S. snece ~ , C. Meyer ~ , J. Meyer ~ , J. Meyer ~ , H. Meyer / J. Hoenhausen ~ , F. Miano⁵¹, R.P. Middelon¹³⁵, S. Mglioranzi, S.S. L. Mjiović,⁹¹, G. Mikenberg T.S. M. Mikstikova1²⁸ M. Mikuz²⁸, M. Mikse³¹, A. Mikic¹⁶¹, D.A. Millar²⁹, D.W. Milke³³, A. Milor¹⁷⁵, D.A. Mistacal⁴⁴⁵, Mist A.A. Minaenko¹³², I.A. Minashvili⁵⁶, A.I. Mince¹¹⁷, P. Mindur⁴¹, M. Mineev⁶⁶, Y. Minegishi¹⁵⁷, Y. Ming¹⁷⁵, L.M. Mit¹³, A. Minto^{56,36}, K.P. Misty¹²³, T. Minai¹⁷⁴, J. Minteev⁵¹⁰, Y. A. Mitsou¹⁷⁰ Ming, L.-M. Min, A. MILO, K.-P. MISUY, J. MIMBAN, M. MINENSKI, Y.-Y. AMISOU, A. Mincci⁴¹, R. S. Miyagawa⁴¹, A. Mizukam¹⁰, J.U. Mjormant⁴³, T. Mikrichyan¹⁰⁰, M. Mjynarikova T. Moa¹⁴⁶a,¹⁴⁶⁰, K. Moigie²⁵, J. Monk⁵, P. Monjef³⁵, A. Monataban-¹⁵⁰, J. Montejo Berlingen³², M.C. Mondragon⁹, K. Moigie³, J. Monk⁵, R. Monier⁴⁸, A. Monataban-¹⁵⁰, J. Montejo Berlingen³²

T. LeCompte⁶, F. Ledroit-Guillon⁵⁷, C.A. Lee²⁷, G.R. Lee^{34a}, S.C. Lee¹⁵³, L. Lee⁵⁹, B. Lefebyre⁹⁰

F. Monticelli⁷⁴, S. Monzani^{94a}, R.W. Moore³, N. Morange¹¹⁹, D. Moreno²¹, M. Moreno Llácer³² ^E Honticelli¹², S. Morzam¹⁰⁴, R.W. Moore³, N. Morang¹¹⁹, D. Morene¹¹, M. Moriso⁹, P. Morettin³⁵³, M. Morgenstern¹⁰⁹, S. Morgenstern³², D. Mori¹⁴⁴, T. Mori¹⁵⁷, M. Moriš¹⁹, M. Moring¹⁵¹, V. Morisbat¹²¹, A.K. Modej³⁵, G. Mornach¹²⁵, J.D. Morris¹⁵⁹, L. Morvaj¹⁵⁰, P. Moschovako¹⁰, M. Mosidze³⁶⁵, H.J. Moss¹⁴⁴, J. Moss¹⁴⁵, M. Motelle¹²⁷, R.S. P. Muelle¹²⁷, P. Moschovako¹⁰, M. Mosidze³⁶⁶, S. Muatza³⁵, F. Mueller¹³⁰, R.S. P. Muelle¹²⁷, D. Monstermann⁷⁵, P. Mullen⁴⁶, G.A. Mullier¹⁵, F.J. Munoz Sanchez⁴⁷, P. Muril¹⁴⁶, M. J. Muray^{17,131}, J. A. Murrone^{454,69}, M. Mullish¹³⁷, C. J. Wavey¹⁰⁷, A. G. Myagov^{132,47}, J. Nyers¹¹⁸, M. Myska¹⁵⁰, B.P. Nachman¹⁶, O. Nackenhorst⁴⁶, K. Naga¹²², R. Naga¹⁰⁴⁷, K. Nagano⁴⁶, Y. Nagasaka⁴¹, K. Nagata¹⁶⁴, M. Nagel⁷¹, E. Nag³⁸, A.M. Naiz³², Y. Nakahama¹⁶⁵, K. Nakamura⁶⁹, T. Nakamura¹⁵⁷, I. Nakano¹¹⁴, R.F. Naranjo Garcia⁴⁵, R. Naraya¹¹, D.I. Narirab Villaf⁴⁶, N. Seprilia^{124,150}, M. Seprin¹²⁵, S. Nekaraj¹⁶⁶, C. Nellis⁴⁷, M. K. Hokeava³⁷, J.I. Neep¹¹⁸, N. Negril^{324,150}, M. Seprin¹²⁵, S. Nekaraj¹⁶⁴, R. Naraya¹¹, D.I. Narirab Villaf⁴⁶, N. Seprili^{324,150}, M. Seprin¹²⁵, R. Netrya¹²⁷, R. Newman¹⁹, T.J. Neg⁶², Y. S. Ne¹⁷, T. Numann⁴, B.R. Nickeno¹²⁴, R. Numann¹⁷, P.N. Newman¹⁹, T.J. Neg⁶², Y. S. Ne¹⁷, T. Nuwaman¹⁶, B. Nickeno¹²⁴, R. Nichena¹⁴⁵, J. Nick¹⁵⁵, N. Nick¹⁵⁶, N. Nick¹⁵⁷, N. Nich¹⁵⁶, N. Nich¹⁵⁷, N. Nich¹⁵⁷, P. Newman¹⁹, T.N. Ku⁶⁵, Y. S. Ni¹⁷, P. Newman¹⁹, T. Nig⁶⁵, N. S. Nich¹⁷, Z. Nich¹⁷, R. Nich¹⁵⁵, J. Nich¹⁷, P. Newman¹⁹, N. Nich¹⁵⁶, N. Nich¹⁷, N. Nich¹⁵⁷, N. Nich¹⁷, R. Nich¹⁵⁷, N. Nich¹⁷, P. Nich¹⁵⁷, N. Nich¹⁷, N. Nich¹⁷, N. Nich¹⁷, N. Nich¹⁷, J. Nich¹⁷, N. Nich¹⁷ P. Nemethy¹¹², M. Nessi^{32,42m}, M.S. Neubauet¹⁰⁹, M. Neumann¹⁷, P.R. Newman¹⁹, T.Y. Ng⁴²⁵, Y.S. Ng¹⁷, T. Nguyen Manh⁶⁷, R.B. Nickerson¹²², R. Nicolaidou¹³⁸, J. Nicksen¹³⁹, N. Nikiforou¹¹, V. Nikolaenko^{152,64}, I. Nikolic-Audit³³, K. Nikolopoulos¹⁹, P. Nikson²⁷, Y. Ninomiya⁶⁰, A. Nisul^{134a}, N. Niku³⁶⁰, R. Nisus¹⁶⁰, J. Nitsche⁶⁶, T. Nitta¹⁷⁴, T. Nobe¹⁵⁷, Y. Noguch¹⁷¹, M. Nomach¹²⁵, J. Nomidis³¹, M.A. Nomura²⁷, T. Noonp²⁷⁹, M. Nordher²⁷², N. Nogicharuddeen¹²², O. Noycordova⁴⁷ R. Novotny¹³⁰, M. Nozak⁴⁹⁰, L. Nozka¹¹⁷, K. Nekas¹⁶⁶, E. Nurse⁸¹, F. Nuti⁹¹, K. O'Connor²⁵, ... R. HOOGHY, J. M. KUZARI, L. HOZARI, K. HUKAS, E. LUISE, J. F. HOUSE, J. H. OLZARI, J. C. O'Neil¹⁴⁴, A.A. O'ROUKAE⁶⁵, V. O'Shea⁵⁶, F.G. Okham^{31,4}, H. Oberlack¹⁰⁰, T. Obermann²³, J. Ocariz⁸³, A. Och⁷⁰, I. Ochoa³⁸, J.P. Ochoa-Ricoux^{34a}, S. Oda⁷³, S. Odaka⁶⁹, A. Oh⁸⁷, S.H. Oh⁴⁷ H. Oppen¹²⁷, M.J. Oreglia³⁵, Y. Oren¹²⁷, D. Orestano^{1568,108}, E.C. Orgill⁴⁷, N. Orlando⁶⁸⁰, R.S. Otri⁴⁷, B. Osculaf¹³⁵, S.⁴⁸, R. Ospano⁴⁸⁶, G. Otero y Garcan⁵⁹, H. Otono⁷³, M. Ouchrif¹³⁷, F. Ould-Saada¹² A. Ouraou¹³⁸, K.P. Oussoren¹⁰⁹, Q. Onyang³⁵⁸, M. Owen⁵⁹, R.E. Owen¹⁹, V.E. Ozcan⁵⁰, N. Ozturk⁸, K. Pachal¹⁴⁴, A. Pacheco Pages¹³, L. Pacheco Rodriguez¹³⁸, C. Padilla Aranda¹³, S. Pagan Griso¹⁶, M. Paganin¹⁷⁹, F. Paiga²⁷, G. Palacino⁴⁶, S. Pataczo^{644,06}, S. Palestin¹³², M. Palka⁴¹⁰, D. Palla¹⁷, E.St. Panagiotopoulou¹⁰, I. Panagoulias¹⁰, C.E. Pandini⁵², J.G. Panduro Vazquez⁵⁰, P. Pani³², D. Partea²⁸, L. Paolozi²⁵, Th.D. Papodopollou¹⁰, K. Papageorgiou^{9,7}, A. Paramonov⁶, D. Partea⁸⁸, H. Paolozi²⁵, Th.D. Papodopollou¹⁰, K. Papageorgiou^{9,7}, A. Paramonov⁶, D. Paredes Hernandez⁶²⁶, B. Parida³⁶⁶, A.J. Parker⁷⁵, M.A. Parker³⁰, K.A. Parker⁴⁵, F. Parodi^{53a,53k} D. Paredes Hermandez²⁰⁰, B. Parida²⁰⁰, A.J. Parker²⁷, M.A. Parker²⁷, K.A. Parker²⁷, F. Parodi^{20,200}, J.A. Parsons³⁰, S. UParzefall³¹, V.R. Pascuzz¹⁰, J.M. Pasner¹²⁰, E. Pasqualucci¹¹las, S. Passagio³³, Fr. Paston²⁰, S. Pataraid⁸, J.R. Pater³⁷, T. Pauly³², B. Pearson¹¹⁰, S. Pedraza Lopez¹¹⁰, R. Pedro^{120,210}, S. V. Pelegandhul^{11,11}, C. D. Penris¹³, M. Hengy⁴⁵, J. Penresl¹⁴⁴, B.S. Peralva²⁰⁰, M.M. Perego¹³⁸, D.V. Perepelitas²⁷, F. Perl¹⁷, L. Pering^{144,340}, H. Pernsey²⁷, C. Petresl³³, M. Penris¹⁰, C. T. Petresl³⁰, B.A. Petersen²⁷, T.C. Petresc¹⁰, S. Petril³⁷, A. Petridis¹, C. Petrilo^{33,41}, M. Petrov¹², J. Petrico^{13,10}, S. Petersson⁹, A. Peyaul¹³⁸, R. Pezo³⁴⁰, T. Pham⁹, F.H. Phillp⁵³, M. Petrov¹², J. P. Fetrecc¹³, A.D. Pikington⁹⁷, M. Pinamont^{135,1359}, J.L. Pinfold³, M. Pitr^{17,3}, M.A. Picker³⁷, V. Piekro¹³, A.D. Pikington⁹⁷, M. Pinamont^{135,1359}, J.L. Pinfold³, M. Pitr^{17,3}, M.A. Piekre³⁷, V. Piekro¹³, P. Brotsten³⁶⁷, D. Denkolf, D. Denkolf, D. Denkerne³⁸, B. Denezil²³, J.D. Piekro¹³, A. Piekre³⁷, V. Piekro¹³, P. Piekro¹³, P. Paterson¹⁵, D. Denkolf 10, Denkolf 10, Denesil¹⁰, P. Parton¹³, P. Paterson¹⁵, P. Paterson¹⁵, P. Paterson¹⁵, P. Peint¹³, J. Piekro¹⁵, P. Paterson¹⁵, P. Paterson¹⁵, P. Piekro¹⁵, P. Piekr A.D. Pitkington²⁴, M. Hnamonti²⁴, S.D. Pitholot²⁵, M. H. Hu¹¹⁷, M.-A. Pieter²⁷, V. Pieskot²⁴, E. Plottikov²⁶, B. Dettiho¹⁷, P. Poderezko¹¹¹, R. Poettgn³⁸, R. Poggi¹²Al.¹²⁵, L. Deggioli¹¹⁹, A. Polini²², C. S. Pollard⁴⁵, A. Poles⁴⁵, A. Policic⁴⁵, D. Pollicic⁴⁵, M. Polini²⁴, M. Polini²⁴, M. Polini²⁵, C. S. Pollard⁴⁵, V. Polytornauko²⁷, D. Denomarenko¹¹⁰, I. Pontecoro¹³⁴, G. A. Polini²⁵, C. S. Pollard⁴⁵, M. Pottillo Quintero³⁵, S. Pospill³⁰, K. Potamiano⁴⁵, I.N. Potrap⁶⁶, C.J. Potte³⁰, H. Pottil¹¹, T. Poulsen⁴⁴, J. Poveda²⁵, M.E. Potzo Astigarraga²⁷, P. Fralavori⁴⁶, S. Prell⁶⁷, D. Prico⁴⁷, M. Pitmaver²⁰, S. Pince⁴⁰, P. Noval²⁰, N. Poveda²⁵, P. Puzo¹¹⁹, J. Qian⁹², Y. Qia⁸⁷,

A. Ouadt⁵⁸, M. Oueitsch-Maitland⁴⁵, A. Oureshi¹, V. Radeka²⁷, S.K. Radhakrishnan¹⁵⁰, P. Rados⁹ A. Quadr¹⁰, M. Queitsch-Maitland¹⁰, A. Quresh¹¹, V. Kadeka²¹, S. K. Kadhakrishnan¹²⁰, P. Kados²¹, F. Ragusz^{448,046}, G. Rahal¹³, J. A. Raine⁷, J. S. Rajagopalan²¹, T. Rashid¹¹⁹, S. Raspopov³, M.G. Ram^{164,366}, G. Raha¹¹³, J. A. Raine⁷, S. Rajagopalan²¹, T. Rashid¹¹⁹, S. Raspopov³, M.G. Ram^{164,366}, D.M. Rabuzz^{123a,1250}, A. Redel¹²¹, N. P. Radioff³⁷, M. Realz^{66,376}, D.M. Rebuzz^{123a,1250}, A. Redelbacl G. Redling¹²⁷, R. Recce¹³⁹, R. G. Reed¹⁴⁷⁵, K. Revets⁴¹, I. Rhinish¹¹, J. Reichert¹²⁴, A. Reisl⁸⁶, C. Rembser³², H. Ren^{55,354}, M. Reszignil³⁵⁴, S. Rescon¹³⁴, S. D. Ressguit¹²³, S. Reitte¹⁷¹, S. Richert¹⁷¹, S. Richert¹⁷², S. Richert¹⁷¹, S B.M. Schachtner⁴⁴⁷, D. Schaeler⁴⁷, L. Schaeler⁴⁷, S. Schaeler⁴⁷, S. Schaeler⁴⁷, U. Schaler⁴⁷, A. C. Schatfel⁴⁷, D. Schaeler⁴⁷, R. D. Schaeler⁴⁷, V.A. Schaeler⁴³, V.A. Scheirich¹¹, F. Schench¹⁷, D. Schall⁴⁰, R.D. Schamberger¹³⁰, V.A. Schaeler⁴³, J.K. Schillagen²³, Z.M. Schillag⁴², C. Schiu⁵⁷, S. Schi⁴⁷, K. Schillag⁴⁷, Z. M. Schillag⁴⁷, S. Schmit⁴⁸, S. Schmit⁴⁸, S. Schmit⁴⁸, S. Schillag⁴⁷, K. Schmit⁴⁸, J. Schmit⁴⁸

. Simic68, S. Simion¹¹⁹, E. Simioni⁸⁶, B. Simmons⁸¹, M. Simon⁸⁶, P. Sinervo¹⁶¹, N.B. Sinev¹¹ M. Sioli^{22a,22b}, G. Siragusa¹⁷⁸, I. Siral⁶², S.Yu. Sivoklokov¹⁰¹, J. Sjölin^{143a,143b}, M.B. Skinner⁷⁵, P. Skubic¹¹⁵, M. Slater¹⁶, T. Slavicek¹²⁰, M. Slawinsk⁴², K. Sliva⁴⁶⁵, R. Slova¹³¹, V. Smakhilu¹⁷ B.H. Smart⁴, J. Smieško¹⁴⁶⁴, N. Smirnov¹⁰⁰, S.Yu. Smirnov¹⁰⁰, Y. Smirnov¹⁰¹, I.N. Smirnov¹¹⁰, O. Smirnov³⁴, J.W. Smith³⁸, M.N.K. Smith³⁸, R.W. Smith³⁸, M. Smizanska⁷⁵, K. Smolek¹³⁰, A. A. Snesarev⁽⁸⁾, I.M. Snyder¹¹⁸, S. Snyder²⁷, R. Solit¹⁷², P. Stoch⁴⁷, A.M. Soffa¹⁶⁶, A. Soffer¹¹ A. Søgaard⁴⁹, D.A. Soh¹⁵³, G. Sokhramyi⁷⁸, C.A. Solans Sanchez³², M. Solar¹³⁰, E.Yu. Soldatov¹⁰ U. Soldevila¹⁷⁰, A.A. Solodkov¹³², A. Soloshenko⁶⁸, O.V. Solovvanov¹³², V. Solovvev¹²⁵, P. Sommer [U. Soldevila¹⁷⁰, A.A. Solodkov¹³², A. Soloshenko⁴⁸, O. V. Solovyanov¹³², V. Solovyev¹³⁵, P. Sommel¹³⁴, N. Sogaris, A. Soloshenko⁴⁸, O. N. Sowa⁴⁸o, L. Sovienoulou^{128,1280}, S. Sottocornola^{128,1280}, R. Soudahl¹⁶al¹⁶⁵, A.M. Soukharev^{111,e}, D. South⁵⁵, B.C. Sowden⁴⁸⁰, S. Spagnolo^{76,476}, M. Spalla¹¹⁰, M. Spagnegherg¹³⁷, F. Span³⁸⁰, D. Spetich¹⁷, F. Spettel¹⁰³, T.M. Spieke⁴⁷⁶, R. Spiglu¹²⁸, G. Spigo³⁷, L.A. Spille⁴⁷, M. Spouka¹³, R.D. St. Denis⁵⁶, A. Subla^{184,480}, B. Stamerl⁴⁰⁶, S. Share¹⁷², F. Stanecka²⁶, R. Stamerl⁴⁰⁶, S. Stame¹⁷⁴, F. Stanecka²⁶, R. Stamerl⁴⁰⁷, S. Stame¹⁷⁴, F. Stanecka²⁷, R. Staneka⁴⁷⁵, P. Steinberg²⁷, B. Stelzer¹⁴⁴, J. Stelze¹⁷⁴, B. S. Starg¹⁷⁶, S. Share¹⁷⁵, F. Starszwa¹⁷⁴, M. Stegler⁵⁷, P. Steinberg²⁷, B. Stelzer¹⁴⁴, J. Stelze¹⁷⁴, O. Stelzer¹⁴¹, S. Starsz⁴⁷⁵, J. Starsz⁴⁷⁶, P. Steinberg²⁷, B. Stelzer¹⁴⁴, G. Stoice³⁸⁵, P. Sottoch³⁸⁵, S. Stoice¹⁵⁵, J. Steward³⁷⁶, J. Steinberg²⁷, B. Stelzer¹⁴⁴, G. Stoice³⁸⁵, P. Stoice³⁸⁵, P. Stoich³⁸⁵, S. Stoice¹¹⁵, J. Steward³⁷⁶, J. Sternof⁴⁹⁷, J. Sternof⁴⁹⁷, J. Sternof⁴⁹⁷, B. Sternof⁴⁹⁷, A. Stelzer¹⁴⁴, G. Stoice³⁸⁵, S. Stoice¹¹⁵, J. Steward³⁷⁶, J. Sternof⁴⁹⁷, B. Sternof⁴⁹⁷, J. Sterno G. Sorkard, T. Sofka, A. Sorkard, A. Sorkard, S. Standberg, M. Swalawa, J. Sorkardberg, J. Sorkardberg, J. Swalaberg, S. Strandberg, *Phys. Rev. B*, Ströhmet¹⁷⁸, D.M. Strönm¹⁷⁸, R. Ströhmet¹⁷⁸, D.M. Strönm¹⁷⁸, R. Ströhmet¹⁷⁸, D.M. St C.J.E. Suiser "-, M.K. Suiton" - S. Suzkit - M. Svatos" -, M. Switoroster, ", S.F. Switr," A. Sydorenko¹, I. Sykora¹⁴, D. Tsykora¹⁴, D. Tafa¹⁶, K. Tackman⁶, J. Taenzer¹⁵, A. Taffraq¹⁶, R. Tafrout¹⁴⁵⁰, E. Tahirovit²⁰, N. Taiblum¹⁵, H. Taka¹⁷, R. Takashima¹⁷, E.H. Takasuji¹⁰³, K. Tadeda¹⁰, T. Takeshin¹⁴, Y. Takubo¹⁹, M. Tablay⁸, A.A. Tajkov¹¹, J. Tanaka¹⁵, M. Tanaka¹⁵ K. Takeda¹⁰, T. Takeshita¹⁴⁴, Y. Takubo²⁰, M. Tably³⁰, A.A. Tabyshe^{111,4}, J. Tanaka¹⁵⁷, M. Tanaka¹⁵⁹, R. Tanaka¹⁵⁰, B. R. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, A. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, A. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, A. Tanaka¹⁵⁴, G. Tanaka¹⁵⁴, J. Tanaka¹⁵⁴, A. Tanaka¹⁵⁵, J. Tanaka¹⁵⁷, A. C. Taylor¹⁶⁵, P. Teiseira-Dias²⁶⁰, D. Temple¹⁴⁴, H. Ten Kana³⁵, P.K. Tengle¹⁵³, J.J. Teohl²⁵⁰, F. Tepell¹⁷⁷, S. Terada¹⁶⁹, K. Terashi¹⁵⁷, J. Teron⁸⁵, S. Terzol³⁵ M. Iesta⁹⁶, K.J. Fuexher^{101,07}, S.J. Thais¹⁷⁰, T. Iheveneaux-Velzer⁵⁰, F. Thiele⁸⁷³, J.P. Thomas¹⁷³, P.D. Thompson¹⁷⁵, A.S. Thompson⁵⁶, L.A. Thomsen¹⁷⁵, E. Thomson¹²⁴, Y. Tani¹⁸⁸, R.E. Ticse Torres¹³⁴ V.O. Tikhomiro^{196,431}, Yu.A. Tikhonov^{111,47}, S. Timoshenko¹⁰⁰, P. Tipton¹⁷⁹, S. Tisseran¹⁸⁸, K. Todome¹²⁹, S. Todorova-Nova⁷, S. Toddr¹⁷, J. Tojo⁷⁷, S. Tokár¹⁴⁶⁶, K. Tokushuku⁴⁰, E. Tolley¹¹³, M. Tomoco¹⁰⁵, L. Tompkin^{184,456}, M. K. Tons¹⁰⁷, B. Torge¹⁹⁷, P. Tomanha⁵⁷, E. Torrene¹¹⁸, H. Torres⁴⁷⁷, E. Torré Pastor¹⁴⁹, J. Tott^{88,404}, F. Touchard⁸⁸, D.R. Tovey¹⁴¹, C.J. Treado¹¹², T. Terizger¹⁷⁸, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁴, ¹¹⁵, ¹¹⁵, ¹¹⁵, ¹¹⁵, ¹¹⁵, ¹¹⁶, ¹¹⁵, ¹¹⁵, ¹¹⁵, ¹¹⁶, ¹¹⁵, ¹¹⁵, ¹¹⁶, ¹¹⁵, ¹¹⁶, ¹¹⁵, ¹¹⁶, ¹¹⁶, ¹¹⁵, ¹¹⁶, ¹ E. Tresoldi¹⁵¹, A. Tricoli²⁷, I.M. Trigger^{163a}, S. Trincaz-Duvoid⁸³, M.E. Triniana¹³, W. Trischuk¹⁶ B. Trocmé⁷, A. Trofymov⁴⁵, C. Trocco⁹⁴, M. Trovatelli¹⁷, L. Truogi⁴⁷, M. Trzebinski⁴⁷,
 A. Trzupęk⁴², K.W. Tsang^{62a}, J.C-L. Tseng¹²², P.V. Tsiareshka⁹⁵, N. Tsirintanis⁹, S. Tsiskaridze A. Trzupek⁴², K.W. Tsang⁴²⁶, J.C.L. Tseng¹²², P.V. Tsiareshka⁵⁹, N. Tsikrintanis⁵, S. Tsikkaridze¹⁵, V. Tsikstridz¹³⁸, E.G. Tsikhadazz⁵⁴⁶, H. Tsukerman³⁰, Y. Tsuylain¹⁶, S. Tsurohkhind⁸⁶, D. Tsyybev¹⁵⁰, Y. Tud⁵⁶, A. Tudorache²³⁶, V. Tudorache²³⁶, T. T. Tuburc³³⁶, A.N. Tum³⁹, S. Turchikhind⁸⁶, D. Turgeman¹⁷⁵, J. Turk Cakiha⁶⁶, R. Curkel¹²⁴, A.N. Tum³⁹, S. Turchikhind⁸⁶, D. Turgeman¹⁷⁵, J. Turk Cakiha⁶⁶, R. Curkel¹²⁴, Za²⁷, H. Ucado⁹⁷, M. Ugbettol^{148a,1480}, P. Uragilo³⁰, P. Urrepial³⁶, G. Usal⁴⁷, J. Usau⁴⁷⁰, L. Vacevana⁶⁸, V. Vacek¹³⁰, B. Vacho⁹⁷, K. O.H. Vadla¹²⁴, A. Vaidya¹⁷⁵, A. Valler⁵⁷, J. Valler⁵⁷, J. Valler⁵⁷, J. Valler⁵⁸, A. Valert¹³⁰, S. Valler⁵⁷, J. Valler⁵⁷, J. Valler⁵⁷, J. Valler⁵⁷, J. Valler⁵⁸, V. Vacek¹³⁰, W. Van Den Wollenberg¹⁰⁹, H. van der Grand¹⁰⁹, P. van Gemmeren⁶, J. Van Nikeuwkop¹⁴⁴, I. van Valpen¹⁰⁹, M.C. van Woerden¹⁰⁹, M. Vanadia^{135,1350}, W. Vandelli³², A. Valinch¹⁶⁴, J.

P. Vankov¹⁰⁹, R. Vari^{134a}, E.W. Varnes⁷, C. Varni^{53a,53b}, T. Varol⁴³, D. Varouchas¹¹⁹, A. Vartapetian K E Varvell¹⁵² I.G. Vasquez¹⁷⁹ G.A. Vasquez^{34b} E Vazeille³⁷ D. Vazquez Eurelos¹³ R.E. varven 7, 55, vasquez 7, varven 7, var W. Verkerke¹⁰⁹, A.T. Vermeulen¹⁰⁹, J.C. Vermeulen¹⁰⁹, M.C. Vetterli^{114,4}, N. Viaux Maira^{34b}, O. Viazlo⁸⁴, I. Vichou^{169,*}, T. Vickey¹⁴¹, O.E. Vickey Boeriu¹⁴¹, G.H.A. Viehhauser¹²², S. Viel¹⁰ O. Ricken²³, M. Ridel³³, P. Rick¹⁴³, C. J. Riegel¹⁷⁷, O. Rikli⁴⁵, M. Rijssenbeek¹³⁰, A. Rimoldi¹²⁵, L. Vigan¹²⁷, M. Villap^{1242,225}, M. Villap¹⁴¹, O.E. Vickey Boeriu¹⁴¹, G.H. A. Viehhauser¹²², S. Viel¹¹, M. Rimoldi¹³⁵, L. Rimaldi²³⁴, G. Righelin⁴⁰, B. Riskli⁴⁵, P. Riskli⁴⁵, P. Riskli⁴⁵, P. Riskli⁴⁵, P. Riskli⁴⁵, R. Riskli⁴⁵, P. Riskli⁴⁵, R. Riskli⁴ P. Voka²⁰⁷, G. Vojp⁻⁷, S.L. Von Buddenbrock²⁰⁷, E. Von Ioerne⁻⁷, V. Vorba¹⁰⁰, M. Vorsewiji,¹⁰⁰, M. Vakal¹⁰⁰, M. Walkowia,¹¹⁴, V. Wallangen^{148,148}, A. M. Wang⁵⁹, C. Wang⁵⁸, A. Washur₁²⁰, J. Walde⁷⁵, R. Walke¹⁶, H. Wang¹⁵, J. Wang⁵⁶, J. Wang⁵⁵, A. Warburot,²⁰, C. Wang⁵⁵, A. Warburot,²⁰, C. P. Ward⁵⁵, T. Wang⁵⁸, W. Wang¹⁵⁵, and W. Wang⁵⁶, A. Washbrook⁴⁹, P.M. Wathin¹⁵, T. Wang¹⁵⁵, M. Wang⁵⁶, A. Washbrook⁴⁹, P.M. Wathin¹⁵, W. Wang¹⁵⁵, A. Washbrook⁴⁹, P.M. Wathin¹⁵, T. Wang¹⁵⁵, A. Washbrook⁴⁹, P.M. Wathin¹⁵⁵, T. Wang¹⁵⁵, A. Washbrook⁴⁹, P.M. Wathin¹⁵⁵, W. Wang¹⁵⁵, A. Washbrook⁴⁹, P.M. Wathin¹⁵⁵, T. Wang¹⁵⁶, A. Washbrook⁴⁹, P.M. Wathin¹⁵⁵, T. Wang¹⁵⁶, M. Wang¹⁵⁵, M. Wang¹⁵⁶, M. Wang¹⁵⁶, M. Wang¹⁵⁵, M. Wang¹⁵⁵, T. Wang¹⁵⁶, M. Washbrook⁴⁹, P.M. Wathin¹⁵⁵, T. Wang¹⁵⁶, M. Wang¹⁵⁵, M. Wang¹⁵⁶, M. Wang¹⁵⁵, M. D. Robinson⁴⁵ A. Robison⁵⁶ S. Ro M. Rybat⁴⁰⁰, G. Rybkin¹¹⁹ S. Sup⁴ A. Ryzbov¹²³, G. F. Rzehorz⁸⁵ A. F. Sauredri¹⁵², G. Sabata¹⁰⁹
 M. Sweber¹⁸, S. M. Weber⁴⁰, S. A. Weber³¹, J. S. Webster⁶ A. R. Weidberg¹²², B. Weinert⁶⁴, S. Sacedoti¹¹⁹, H.F.W. Sadrozinski¹³⁹, R. Sadykov⁶⁴, F. Satia Tehranl¹⁵⁴, P. Sahil¹⁰, M. Sahinsoy
 J. Sweber¹⁸, S. M. Weber⁴⁰, S. A. Weber³¹, J. S. Webster⁶ A. R. Weidberg¹²², B. Weinert⁶⁴, S. Sweine²³, M. Sweber³¹, P. Sakato¹⁵⁷, G. Salamana¹⁵⁶, J. S. Salataro¹⁵⁶, H. Sakatov¹⁵⁷, G. Salamana¹⁵⁶, J. Salitagi¹⁰, A. Sahin¹⁰, D. Sahin¹⁰, J. Salitagi¹⁰, A. Sahin¹⁰, D. Sahin¹⁰, D. Sahin¹⁰, J. Salitagi¹⁰, A. Sahin¹⁰, J. Sahin¹⁰, D. Sahin¹⁰, J. Salitagi¹⁰, A. Sahin¹⁰, J. Sahin¹⁰, D. Sahin¹⁰, J. Sahin¹⁰, S. Sanin¹⁰, J. Sahin¹⁰, J. Sahin¹⁰, S. Sanin¹⁰, J. Sahin¹⁰, S. Sanin¹⁰, J. Sahin¹⁰, S. Sanin¹⁰, J. Sahin¹⁰, S. Sanin¹⁰, J. Sahin¹⁰, J. Sahin¹⁰, J. Sahin¹⁰, J. Sahin¹⁰, S. Sahin¹⁰, S. Sahin¹⁰, J. Sahin¹⁰, S. Sahin¹⁰, J. Sahin¹⁰, S. Sahin¹⁰, S. Sahin LAAM, WIIK-PUGIS', A. WIIGARET, F. WIIK', H.G. WIIKEIS', F.H. WIIKINS', S. WIIIGARS, A. WIIGARS, A. WIIIGARS, S. WIIIGARS, A. WIIGARS, A. WIIIGARS, S. WIIIGARS, S. WIIIGARS, A. WIIIGARS, S. WIIIGARS, A. WIIIGARS, S. WIIIGARS, A. WIIIGARS, T. M. WIIIGARS, A. WOITS, F. WIIIKARS, A. WOITS, A. WIIIGARS, A. WIIIGARS, A. WIIIGARS, A. WOITS, A. WOI K. W. WUZIARA WI, WU S.L. WU Y, K. WU Y, K. WU P, K. WJAH, S. M. WJIAF, S. K. KIM, X. KIM, K. K. YANG, K. K. YANG, L. XIA⁷, T. Xu¹³⁸, W. Xu², B. Yabsley S.S. Yacoob⁴⁷⁸, K. Yajima²⁰⁰, D. Yamaguchi¹⁵⁹, Y. Yamaguchi¹⁵⁹, A. Yamamoto⁶⁹, T. Yamanaka¹⁵⁷, F. Yamanak, ¹⁵⁷, Y. Yamazaki¹⁵⁷, Y. Yamazaki¹⁷⁰, Z. Yan²⁶⁴, H. Yang⁵⁸⁰, H. Yang¹⁶, S. Yang⁶⁶, Y. Yang⁵¹³, J. Yamazaki¹⁵⁷, Y. Yamazaki¹⁷⁰, Y. Yamazaki¹⁷⁰, Y. Yamazaki¹⁷⁰, Z. Yan²⁶, H. Yang¹⁶, S. Yang⁶⁶, Y. Yang⁵³, Y. Yang⁶⁵, Y. Yasu⁶⁹, F. Yasu⁶⁵, Y. Yasu⁶⁹, J. Yasu⁶⁷, J. Yusu⁶⁷, J. Yasu⁶⁷, J. Yasu⁶⁷, Y. Yasu⁶⁷ S. Schramm², E. Schopf², M. Schule⁶, J.F.P. Schouwenberg¹⁶, J. Schowaccovi, Ph. Schune¹³⁸, A. Schule⁶, H. C. Schulz-Coulom⁶, M. Schoumeker⁵, B. S. Schwancovi, Ph. Schune¹³⁸, A. Schule⁶, H. C. Schulz-Coulom⁶, M. Schoumeker⁵, B. S. Schwancovi, S. Schwand¹³⁹, J. Schwindling¹³⁸, A. Schule⁶, H. C. Schulz-Coulom⁶, M. Schumeker⁵, B. S. Schwancovi, S. Schwindling¹³⁸, A. Schule⁶, H. C. Schulz-Coulom⁶, M. Schumeker⁵, B. S. Schwancovi, S. Schwindling¹³⁸, A. Schule⁶, H. C. Schulz-Coulom⁶, M. Schwanzevi, S. Schwindling¹³⁸, A. Schule⁶, J. Schwanz², P. Schul⁶, M. Scompaneh¹⁶⁰, S. Schwanz¹⁷, P. Schul⁷, J. Schul⁷, Y. Yanz¹⁵, S. J. Schul⁶, M. Scompaneh¹⁷, S. Schwin⁷, S. Schul⁶, S. Schul⁶, S. Schul⁷, S. Schul⁶, S. Schul⁶, S. Schul⁶, S. Schul⁶, S. Schul⁷, S. Schul⁶, J. Schul⁷, S. Schul⁷, S.

and thank you for your attention!

Tamara Vázguez Schröder

Supporting material

Tamara Vázquez Schröder

The Large Hadron Collider (LHC)

The CERN accelerator complex & the collider

Tamara Vázquez Schröder (McGill University)

The ATLAS experiment

Tamara Vázquez Schröder (McGill University)

ATLAS-CONF-2017-046

t**t**H (H→bb): tt̄ modelling

Tamara Vázquez Schröder

Wt differential cross section

First, evidence for single top quark production at LHC in t-channel (a), s-channel (b) and Wt-associated (c) production

arXiv:1712.01602 submitted to EPJC W tW leee

dilepton final state

* Now, also **differential cross section** of Wt for several particle-level observables

Tamara Vázquez Schröder

tīH interest: from Run-1 to Run-2

JHEP08(2016)045

Run-1 ATLAS+CMS Higgs combination:
 tīH significance of 4.4 σ (2.0 σ expected)
 Excess in both ATLAS and CMS μ_{tīH} = σ/σ_{SM}
 Originating from tīH multilepton analyses

Big leap (x4) for ttH SM cross section from 8 to 13 TeV (*) and high statistics of top quark samples collected by the LHC make this SM search extremely interesting to be studied in Run-2!

(*) Other background contributions cross section do not increase as much, but different kinematics at higher energies!

Most recent ttH results

	2015+2016 data [~36 fb ⁻¹] partial 2015+2016 data [~13 fb ⁻¹]	ATLAS EXPERIMENT	COMPact Muon Solenoid		
	ttH multilepton (H→WW/ττ/ZZ)	ArXiv: <u>1712.08891</u> submitted to PRD (including combination)	CMS-PAS-HIG-17-004 (ℓ only) 3.3 σ (exp: 2.5 σ) μ_{ttH} = 1.5 ± 0.5 CMS-PAS-HIG-17-003 (Thad) 1.4 σ (exp: 1.8 σ) μ_{ttH} = 0.72 ^{+0.62} -0.53		
	ttH(bb)	arXiv: <u>1712.08895</u> submitted to PRD	<mark>CMS-PAS-HIG-16-038</mark> µ _{ttH} = -0.19 ± 0.8		
	ttH(ZZ→4ℓ)	arXiv:1712.02304 submitted to JHEP µttн < 7.1	<mark>arXiv:1706.09936</mark> µ _{ttH} < 1.18		
	ttH(yy)	ATLAS-CONF-2017-045 1.0σ (exp: 1.8σ) μ _{ttH} = 0.5 ±0.6	CMS-PAS-HIG-16-040 3.3σ (exp: 1.5σ) μ _{ttH} = 2.2 ^{+0.9} _{-0.8}		
	ATLAS+CMS Run1 combination	JHEP 1608 4.4σ (ex μ _{ttH} = 2.	(2016) 045 (p: 2.0σ) 3 ^{+0.7} -0.6		
33	Tamara Vázquez Schröder (McGill University)				

tīH (multileptons): non-prompt light ℓ (I)

Method [parametr.]	2 ℓSS+0т	3ℓ+0т	4 <i>l</i>	2ℓSS+1τ	Other т channels
Non-prompt lepton	DD (M el: [p _{T,} ΝΙ μ: [p _T , dF	M) Bjets] R(μ,j)]	pseudo-DD (Fake SF)	DD (FF) el/μ: [p _T]	MC (very small)

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

***** Overall **reasonable data/prediction agreement** with estimates fakes in VRs

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

tterfl (multileptons): prompt *l* background validation

- * Largest irreducible backgrounds: tīW, tīZ, diboson
- ***** Estimated using **NLO MC samples**, with theory/modelling uncertainties:
 - Cross-section uncertainties
 - Scale variations
 - Generator comparisons
- \Rightarrow Validated in several regions, eg: 3 ℓ ttW/Z CRs built using the multinomial BDT

* Overall good data/prediction agreement in ttV-enriched CRs using MC simulation

• Also good agreement in cut-based VRs

tīH (multileptons): profile likelihood fit

Rinned profile likelihood fit

*** Parameter of interest**: signal strength

$$\mu_{t\bar{t}H} = \frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}}$$

 $L(\mu, \theta) = L_{Pois}(\mu, \theta) \cdot \prod_{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_p^2}{2}\right)$

*** Systematic uncertainties** included in the fit as <u>nuisance parameters θ </u>

• Need sufficiently flexible model of signal and background!

Constrain uncertainty in <u>control region</u>, propagate this knowledge to <u>signal region</u>

- ***** Find best values for μ and θ from minimising the -log L
- * Calculate experimental sensitivity in terms of the significance
 - Quantify level of disagreement between data and background-only hypothesis as Gaussian standard deviations (σ)

Top Yukawa coupling... why should we care?

Top quark is the heaviest fermion in the SM → Largest Yukawa coupling * The only fermion with such a natural coupling

- Does this point to a special role in electroweak symmetry breaking or beyond the SM physics?
- Top quark Yukawa coupling tells us about the stability of Universe and the required energy scale for new physics

Tamara Vázquez Schröder (McGill University)