% TRIUMF

Beta-SRF – A New Facility to Characterize SRF Materials near Fundamental Limits

Edward Thoeng

University of British Columbia

Vancouver, BC

Superconducting Radiofrequency (SRF) Cavity

ARIEL 9-cell

ISAC QWR

SRF Cavities: Underlying technology for modern linear accelerators

- Developed since the 1960s
- CW: high power LINACs
- High-gradient: shorter LINACs at higher energies

Application Examples:

- RIB Facilities: TRIUMF ARIEL, FRIB
- Light-Source : LCLSII, E-XFEL (768 cavities)
- Electron-positron Collider: ILC (~ 16,000 cavities)

SRF Cavity Performance

Operations: LHe (2K/4K)

ARIEL Cryomodule

Important Parameters

- Q₀ (Quality Factor)
 - ~ 1/(Power Cryogenic)
 - > ~ 1/R_s: SC Surface Resistance
 - Intrinsic Material Properties
- E_{acc} (Accelerating Gradient)
 - Number of cavities required
 - Limited by
 - ✓ Field Emission (High E_{peak})
 - ✓ SC Quench (High B_{peak})
 - Surface Preparation & Geometry

SRF Limitations

Ideal performance Q Thermal breakdown $= wU/P_c = G/R_s$ Multipacting **High Field** Q-Slope Ultimate Field emission Quench Field Hydrogen Q-disease 10 45 3 25 6 Eacc MV/m

Typical Q vs E curve [Padamsee]

Limitations for

Higher Gradient

- Multipacting
- Field Emission
- Thermal quench
- High-field Q slope

Higher Q₀

- Q-disease
- Trapped Flux

4

Solutions

- Geometry Optimization
 - Surface Processing
- Cleanroom Assembly
- Magnetic Shielding
 - Cooling Procedure
 - Doping Recipe

SRF Materials R&D

State-of-the-art SRF Materials

Alternatives to Bulk Nb

Doping / Heat Treatment Nb

- Bulk Nb fundamental limits
- Optimum doping recipes
- TRIUMF Induction Furnace

• New materials:

- Nb3Sn, MgB2, SIS Multilayers
- Pushing magnetic field limit

Beta-decay MR Techniques

<u>Advantage</u>

- Local Probe of Magnetic Field
- Allow sample-size studies (not cavity)

Principle

- Implant μ⁺, ⁸Li⁺
- Precession: $\omega_L \sim \text{local B-field}$
- Beta-decay detection

Beta-NMR vs muSR Techniques

Surface vs Bulk Studies

- Muon (d: 100 μm) vs ⁸Li (d: 0-200 nm)
- Beta-NMR = depth resolved surface/interface study -> Multilayer SIS material, thin-film

Requirement for SRF Material Study

 B-field // sample face (simulate B-field on RF surface) 7

- High-field ~ 200 mT
- Depth-resolved for thin films

Available Facilities at TRIUMF

- muSR: parallel B-field up to 300 mT
- betaNMR:
 - High \(\perp B\)-field up to 9 T (not suitable for SRF)
 - Low // B-field up to 24 mT (field too low)

SRF Exp Configuration

Beta-SRF Facility

beta-NMR for SRF Feature

- Combine SRF expertise (surface treatment) with worldwideunique material science probe
- High // B-field (up to 200 mT) → applicable other studies (superconductivity)

Beta-SRF Beamline Extension Design

- Detailed design has been approved and finalized
- > All of the components have currently been ordered

Conclusion

- SRF cavity -> mature technology for current LINACs and future collider
- Development over the years resulted to:
 - > Fabrication: surface treatment, assembly procedure, heat treatment
 - > Operation: Cryomodule design, cooldown procedure
- Active cutting-edge SRF research:
 - Quest for higher gradient and quality factor
 - Doping + heat treatment recipes
 - > Alternative materials
- TRIUMF offers:
 - Unique world-wide facility -> beta-SRF and muSR
 - Integrated research: SRF and material (superconductivity) research

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

11

Backup Slides: Beta-NMR Site

Backup Slides: Magnet Coil - Stangenes

Figure 4: Coil pair position in beamline (ILE2617) with no interference observed. Note that not all beamline components are shown.

Backup Slides: Beam Optics

