Calibration of SuperCDMS Dark Matter Detectors for Low-Mass WIMPs

Danika MacDonell University of British Columbia

Evidence for Dark Matter Galaxy Rotation Curves

- 1978: Rubin et al. measured rotation speeds of spiral galaxies.
- Disagreement with expectation from luminous disk.
- Early evidence of dark matter in galaxies.

Present data suggests that dark matter comprises ~85% of mass in the universe.

Direct Detection of Dark Matter

- Astrophysical evidence: Majority of dark matter **cannot** be normal baryonic.
- Non-baryonic particles postulated as dark matter constituents.
 - Interactions with normal matter at or below weak scale.
- Goal of "direct detection":
 - Search for particle dark matter candidates.
 - Sensitive to predicted interactions with normal matter.

Hypothesized WIMP Particle

WIMP: Weakly Interacting Massive Particle

- Massive non-baryonic particle (~GeV/ c^2 -TeV/ c^2).
- Predicted to interact with normal atoms via nuclear recoils.
- Primary SuperCDMS search candidate.

SuperCDMS Experiment

- Direct-detection WIMP search.
- Cryogenic semiconductor detectors.
- Measure WIMP-nucleon recoils via:
 - ionization
 - phonons
- World-leading sensitivity to lowmass WIMPs (1.6-5.5 GeV/c²)

Two detector operating modes: iZIP and CDMSlite

iZIP Operation

- Measure **primary** ionization (e-h) and phonon energy.
- Compare primary phonon and ionization energies to discriminate **nuclear recoils (NR**) vs. **electron recoils (ER)**.

CDMSlite Operation

- 25-75V Bias.
- Primary e-h pairs pick up energy.
- Goes into producing "Luke phonons".

- Primary e-h signal magnified by Luke phonons.
 sensitive to lower-energy recoil events than iZIP mode.
- Tradeoff: Luke phonons prevent ER/NR discrimination.

Latest SuperCDMS WIMP Sensitivity Detectors in CDMSlite Mode

$$E_{\text{measured}} = E_{\text{recoil}} \left(1 + Y_{\text{ionization}} \frac{eV_{\text{bias}}}{\epsilon} \right)$$

- iZIP: Measures yield, but low accuracy at low recoil energy.
- CDMSlite: Cannot measure yield.

- iZIP: Measures yield, but low accuracy at low recoil energy.
- CDMSlite: Cannot measure yield.

Require ionization yield info

Lindhard Model for Ionization Yield

$$Y_{\text{ionization}}(E_r) = k \frac{g(E_r)}{1 + k \cdot g(E_r)}$$

- Good agreement with experiment for ~MeV recoils.
- Deviations seen in keV range.
- g(E_r), k: theoretically specified for Ge, but
 - $\mathbf{F} \mathbf{k}
 ightarrow \mathbf{k}(\mathbf{E_r})$ at low energy
- CDMSlite-mode analysis assumes Lindhard with:
 0.1 < k < 0.2
 - → Large energy scale uncertainty

Photo-neutron Calibration Concept

Photo-neutron Calibration Concept

Experimental Setup

Figure: Anthony Villano

- 5 months of data-taking.
- One detector in iZIP mode, the other in CDMSlite mode.
- Alternated weekly between:
 - Be wafer in place
 - No Be wafer (measure gamma background)

Preliminary Spectra (Sb source, detector in CDMSlite mode)

CDMSlite: Recoil Spectra with Sb Source at 70V Bias

Preliminary Spectra (Sb source, detector in CDMSlite mode)

CDMSlite: Recoil Spectra with Sb Source at 70V Bias

Measured Phonon Energy (arbitrary units)

Preliminary Spectra (Sb source, detector in CDMSlite mode)

Experimental

Geant4 Simulated

- Goal: Calibrate NR energy scale of Ge crystal detectors.
 - ~1-8 keV range
- Important for precision of low-mass WIMP searches with Ge detectors.
- Analysis of photo-neutron data is ongoing.
- Will apply negative log-likelihood fit to Lindhard variants to:
 - Model ionization yield.
 - Calibrate the NR energy scale.

SuperCDMS Experiment

Backup Slides

Evidence for Dark Matter Bullet Cluster

- Observed distributions formed after two galaxy clusters collided.
- Blue: mass distribution
- Pink: distribution of lightemitting matter
- Luminous matter lags behind non-luminous matter due to interactions.

- **>WIMP:** Weakly Interacting Massive Particle
 - → Originally motivated by supersymmetry.
 - → Mass expected in GeV-TeV range.
 - → Interaction cross-section predicted at the weak force scale.
 - → Expected to interact with normal atoms via nuclear recoils.

SuperCDMS SNOLAB Projections

Existing Ionization Yield Measurements

36

Repeat for different phonon energies...

Evaluate agreement with Lindhard or other yield models

