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Evidence for Dark Matter 
Galaxy Rotation Curves

Present data suggests that dark matter comprises ~85% of
mass in the universe.  

Early evidence of dark
matter in galaxies.

● 1978: Rubin et al.
measured rotation speeds
of spiral galaxies.

● Disagreement with
expectation from luminous
disk.
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Direct Detection of Dark Matter

● Astrophysical evidence: Majority of dark matter cannot 
be normal baryonic.

 

● Non-baryonic particles postulated as dark matter
constituents.

– Interactions with normal matter at or below weak scale.

● Goal of “direct detection”:

– Search for particle dark matter candidates.
– Sensitive to predicted interactions with normal matter.
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Hypothesized WIMP Particle 

WIMP: Weakly Interacting Massive Particle

➔ Massive non-baryonic particle (~GeV/c2-TeV/c2).

➔ Predicted to interact with normal atoms via nuclear
recoils.

➔ Primary SuperCDMS search candidate.
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SuperCDMS Experiment

● Direct-detection WIMP search.

● Cryogenic semiconductor
detectors.

● Measure WIMP-nucleon recoils via:

– ionization 

– phonons
● World-leading sensitivity to low-

mass WIMPs (1.6-5.5 GeV/c2)

● Two detector operating modes: iZIP and CDMSlite
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iZIP Operation

● 4V bias

● Electron-hole (e-h) 
pairs drift to
electrodes.

● Phonons also
produced.

● Measure primary ionization (e-h) and phonon energy.

● Compare primary phonon and ionization energies to discriminate
nuclear recoils (NR) vs. electron recoils (ER).

Appl. Phys. Lett. 103, 164105  
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CDMSlite Operation

● 25-75V Bias.

● Primary e-h pairs
pick up energy.

● Goes into producing
“Luke phonons”.

● Primary e-h signal magnified by Luke phonons. 
➔ sensitive to lower-energy recoil events than iZIP mode.

● Tradeoff: Luke phonons prevent ER/NR discrimination.
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Latest SuperCDMS WIMP Sensitivity
Detectors in CDMSlite Mode

Uncertainty band
dominated by uncertainty
in NR energy scale of
detectors. 

Phys. Rev. Lett. 116, 071301
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Ionization Yield
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Ionization Yield
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Ionization Yield

Ionization
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● iZIP: Measures yield, but low accuracy 
at low recoil energy.

● CDMSlite: Cannot measure yield.    



  
17

Ionization Yield

Ionization
Yield 

Measured
Phonon energy

Primary Recoil
Energy

● iZIP: Measures yield, but low accuracy 
at low recoil energy.

● CDMSlite: Cannot measure yield.   

Require ionization
yield info 
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Lindhard Model for Ionization Yield

● Good agreement with experiment for ~MeV recoils.

● Deviations seen in keV range.

● g(Er), k: theoretically specified for Ge, but

➢                         at low energy 

● CDMSlite-mode analysis assumes Lindhard with:

0.1 < k < 0.2 

➔ Large energy scale uncertainty
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Photo-neutron Calibration Concept

Pass gammas through Be wafer

Measure NR
spectrum.

Compare with
Geant4 simulation to
calibrate energy
scale.

Figure: 
Belina von Krosigk



  
21

Photo-neutron Calibration Concept

● Large gamma background.
➔ Also take data without Be wafer
➔ Subtract off this background.

Pass gammas through Be wafer

Measure NR
spectrum.

Compare with
Geant4 simulation to
calibrate energy
scale.

Figure: 
Belina von Krosigk
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Experimental Setup

● 5 months of data-taking.

● One detector in iZIP
mode, the other in
CDMSlite mode.

● Alternated weekly
between:

– Be wafer in place

– No Be wafer (measure
gamma background)Figure: Anthony Villano
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Preliminary Spectra 
(Sb source, detector in CDMSlite mode)
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Preliminary Spectra 
(Sb source, detector in CDMSlite mode)

Subtract off
the gamma
background!
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Preliminary Spectra 
(Sb source, detector in CDMSlite mode)

Experimental Geant4 Simulated

Simulation: Anthony Villano
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Summary 

● Goal: Calibrate NR energy scale of Ge crystal detectors.

– ~1-8 keV range

● Important for precision of low-mass WIMP searches with
Ge detectors.

● Analysis of photo-neutron data is ongoing.

● Will apply negative log-likelihood fit to Lindhard variants to:

– Model ionization yield. 
– Calibrate the NR energy scale. 
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SuperCDMS Experiment
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  Backup Slides
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Evidence for Dark Matter
Bullet Cluster 

● Observed distributions
formed after two galaxy
clusters collided.

● Blue: mass distribution

● Pink: distribution of light-
emitting matter

● Luminous matter lags
behind non-luminous
matter due to interactions.
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WIMPs

➔WIMP: Weakly Interacting Massive Particle
 

➔ Originally motivated by supersymmetry.

➔ Mass expected in GeV-TeV range.

➔ Interaction cross-section predicted at the weak force scale.

➔ Expected to interact with normal atoms via nuclear recoils.
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SuperCDMS SNOLAB Projections

Expect to probe WIMP masses
down to 0.4 GeV/c2 at SNOLAB.

➔ Need a good understanding
of NR energy scale in this
region.

Phys. Rev. D 95, 082002
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Existing Ionization Yield Measurements
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Energy Scale Calibration
Integral Test

Experimental Geant4 Simulated
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Energy Scale Calibration
Integral Test
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Energy Scale Calibration
Integral Test

Repeat for different phonon
energies...
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Energy Scale Calibration
Integral Test

Evaluate agreement with
Lindhard or other yield models
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