Determination of Proton Radii of Neutron-rich Oxygen Isotopes

Satbir Kaur

GSI, Germany

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii $\left(\mathrm{R}_{\mathrm{p}}\right)$
$>$ Methods to measure R_{p} and Charge changing cross sections (σ_{cc})
> Experimental Setup
\Rightarrow Results
> Summary

Neutron-rich nuclei

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii

-. Interesting neutron-rich oxygen isotopes.

- Expected magic number nucleus

E. Interesting neutron-rich oxygen isotopes.

${ }^{1} \mathrm{H}{ }^{2}{ }^{2} \mathrm{H}$ n \qquad

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)

©. Interesting neutron-rich oxygen isotopes.

${ }^{1} \mathrm{H} \quad{ }^{2} \mathrm{H} \quad$	${ }^{3} \mathrm{H}$
1232 y	

$\xrightarrow{\mathbf{n}} \longrightarrow \mathrm{N}$

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)
- Neutron drip line of O at ${ }^{24} \mathrm{O}(\mathrm{N}=16)$. (Hoffman et al 2008, Lunderberg et al 2012).

© Interesting neutron-rich oxygen isotopes.

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)
- Neutron drip line of O at ${ }^{24} \mathrm{O}$. (Hoffman et al 2008, Lunderberg et al 2012).
- ${ }^{24} \mathrm{O}$ doubly magic with new magic number $(\mathrm{N}=16)$.
(A. Ozawa et al., (2000), R. Kanungo et al., (2002).) R. Kanungo,(2009))

©. Interesting neutron-rich oxygen isotopes.

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)
- Neutron drip line of O at ${ }^{24} \mathrm{O}$. (Hoffman et al 2008, Lunderberg et al 2012).
- ${ }^{24} \mathrm{O}$ doubly magic with new magic number $(\mathrm{N}=16)$.
(A. Ozawa et al., (2000), R. Kanungo et al., (2002).) R. Kanungo,(2009))
- To yield the drip line at ${ }^{24} \mathrm{O}, 3 \mathrm{NF}$ required .

© Interesting neutron-rich oxygen isotopes.

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)
- Neutron drip line of O at ${ }^{24} \mathrm{O}$. (Hoffman et al 2008, Lunderberg et al 2012).
- ${ }^{24} \mathrm{O}$ doubly magic with new magic number $(\mathrm{N}=16)$.
(A. Ozawa et al., (2000), R. Kanungo et al., (2002).) R. Kanungo,(2009))

An example of 3 N force

- To yield the drip line at ${ }^{24} \mathrm{O}, 3 \mathrm{NF}$ required .

- Expected magic number nucleus ${ }^{28} \mathrm{O}$ unbound (Tarasov et al., 1997)

- Neutron drip line of O at ${ }^{24} \mathrm{O}$. (Hoffman et al 2008, Lunderberg et al 2012).
- ${ }^{24} \mathrm{O}$ doubly magic with new magic number $(\mathrm{N}=16)$.
(A. Ozawa et al., (2000), R. Kanungo et al., (2002).) R. Kanungo,(2009))

An example of 3 N force

- To yield the drip line at ${ }^{24} \mathrm{O}, 3 \mathrm{NF}$ required .

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii

Test of ab-intio theories

Calculated R_{p} with EM and $\mathrm{NNLO}_{\text {sat }}$ interaction
IMSRG, SCGF calculations (Lapoux et al., (2016)), Couple cluster (CC) (Hagen et. al, (2012) Rp e-scattering experiment (Atomic Data and Nuclear Data Tables, 2013)
Proton radii of neutron rich oxygen isotopes not measured till date.

Determination of neutron skin

Neutron skin Thickness $\rightarrow \quad \delta R=\left\langle r_{n}^{2}\right\rangle^{1 / 2}-\left\langle r_{p}^{2}\right\rangle^{1 / 2}$

Neutron skin calculated from measured R_{m} and calculated R_{p}.
Rn determined using matter radii $\left(R_{m}\right)$ from A. Ozawa et al., (2001)
R_{p} data required to determine neutron skin thickness.

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii
$>$ Methods to measure R_{p} and Charge changing cross sections (σ_{cc})

Techniques to measure Charge radii

Electron Scattering :

$$
F(q)=\frac{4 \pi}{q Z} \int_{0}^{\infty} \rho_{\mathrm{ch}}(r) \sin (q r) r \mathrm{~d} r
$$

$\mathrm{F}(\mathrm{q})$ carries information about charge distributions.
Isotope shift: change in energy of atomic levels of different isotopes.
Limitations
$>$ high intensity beams with low energy difficult to produce for very short lived nuclei.
$>$ Not applicable to all neutron rich nuclei.

© Proton radii from
 Charge Changing Cross Sections ($\sigma_{c c}$)

It is the cross-section for reactions leading to any change of the atomic number of the projectile nucleus.

Principle of Measurement :Transmission type measurement

Incident beam (l_{0})

Unreacted beam

$$
I=I_{0} e^{-\sigma_{R} t}
$$

$$
\begin{aligned}
& N_{\text {same } Z}=N_{0} e^{-\sigma_{c c} t} \\
& \sigma_{c c}=\frac{1}{t} \ln \frac{N_{o}}{N_{\text {sameZ }}}
\end{aligned}
$$

© Proton radii from Charge Changing Cross Sections ($\sigma_{c c}$)

It is the cross-section for reactions leading to any change of the atomic number of the projectile nucleus.

Principle of Measurement :Transmission type measurement

$$
\begin{aligned}
& \text { beam }\left(\mathrm{I}_{0}\right) \\
& \sigma_{c c}=\frac{1}{t} \ln \frac{\left(\frac{N_{s a m e Z}}{N_{i n}}\right)_{R_{o u t}} \quad \text { Target out }}{\left(\frac{N_{s a m e Z}}{N_{i n}}\right)_{R_{i n}}} \quad \text { Target in }
\end{aligned}
$$

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii
$>$ Methods to measure R_{p} and Charge changing cross sections (σ_{cc})
$>$ Description of Experimental Setup

∞ Detector Setup
 ${ }^{16-24} \mathrm{O}$ produced from fragmentation of $1 A \mathrm{GeV}^{40} \mathrm{Ar}$ beam at Fragment Separator ,GSI, Germany.

$6.3 \mathrm{~g} / \mathrm{cm}^{2}$ thick Be production target

$$
{ }^{40} \mathrm{Ar}(1 A \mathrm{GeV})
$$

Setup for Charge-Changing Cross Section Measurements
(a)

FRS provides fully identified
TPC TPC TPC exotic nuclei2

Particle Identification Spectrum
 $$
\frac{A}{Z}=\frac{e}{u} \frac{B \rho}{\gamma \beta c}
$$

Magnetic rigidity, $B \rho=B \rho_{\text {central }}\left(1-\frac{M_{B} x_{F 2}-x_{F 4}}{D_{B}}\right)$

Measurement
Purpose

Multisampling lonization Chamber

∞
 Particle Identification Spectrum

PID after removing spurious events
PID spectrum for ${ }^{23} \mathrm{O}$ before the target

Z identification after the target

Transmission ratio $\quad(R)=\frac{N_{\text {same } Z}}{N_{\text {in }}}$

$$
\sigma_{c c}=\frac{1}{t} \ln \frac{R_{o u t}}{R_{i n}}
$$

Energy loss spectrum in MUSIC detector after the target with ${ }^{23} \mathrm{O}$ incident beanh selected.

Outline

> Introduction

- Nuclear landscape and neutron-rich nuclei.
- Scientific Motivation
- Motivation to study oxygen isotopes.
- Importance of Proton Radii
$>$ Methods to measure R_{p} and Charge changing cross sections (σ_{cc})
$>$ Description of Experimental Setup
> Results

Results

$\sigma_{c c}$ of O isotopes

$>$ An increase in $\sigma_{c c}$ of ${ }^{18} \mathrm{O}$.
$>$ The σ_{cc} of ${ }^{19-21} \mathrm{O}$ shows flat trend.
$>$ The $\sigma_{c c}$ of ${ }^{22} \mathrm{O}$ decreases followed by an increase for ${ }^{23} \mathrm{O}$.

R_{p} of ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ from the $\sigma c c$

Glauber Model formalism

$$
\begin{gathered}
\sigma_{\mathrm{cc}}=\int d \boldsymbol{b} P_{\mathrm{cc}}(\boldsymbol{b}) . \\
P_{\mathrm{cc}}^{\mathrm{dir}}(\boldsymbol{b})=1-\exp \left(-2 \sum_{N=p, n} \iint d \boldsymbol{s} d \boldsymbol{t} T_{P r o j}^{(p)}(\boldsymbol{s}) T_{\text {Target }}^{(N)}(t)\right. \\
\left.\times \operatorname{Re} \Gamma_{p N}(\boldsymbol{b}+\boldsymbol{s}-\boldsymbol{t})\right),
\end{gathered}
$$

where $\quad T_{P r o J}^{(p)}(\boldsymbol{s})=\int_{-\infty}^{\infty} d z \rho_{P}^{(p)} \xrightarrow{(\boldsymbol{r})}$ Proton density
and $\Gamma_{N N}(\boldsymbol{b})=\frac{1-i \alpha}{4 \pi \beta} \sigma_{N N}^{\text {tot }} \exp \left(-\frac{\boldsymbol{b}^{2}}{2 \beta}\right) \underbrace{}_{\text {(NN cross section) }}$

R_{p} of ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ from the $\sigma c c$

Glauber Model formalism

$$
\begin{gathered}
\sigma_{\mathrm{cc}}=\int d \boldsymbol{b} P_{\mathrm{cc}}(\boldsymbol{b}) \\
P_{\mathrm{cc}}^{\mathrm{dir}}(\boldsymbol{b})=1-\exp \left(-2 \sum_{N=p, n} \iint d \boldsymbol{s} d \boldsymbol{t} T_{\text {Pro }}^{(p)}(\boldsymbol{s}) T_{\text {Target }}^{(N)}(t)\right. \\
\left.\times \operatorname{Re} \Gamma_{p N}(\boldsymbol{b}+\boldsymbol{s}-\boldsymbol{t})\right)
\end{gathered}
$$

where $T_{P}^{(p)}(\boldsymbol{s})=\int_{-\infty}^{\infty} d z \rho_{P}^{(p)}(\boldsymbol{r})$
Proton density

R_{p} for ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ Agree with e^{-}scattering experiments. and $\Gamma_{N N}(\boldsymbol{b})=\frac{1-i \alpha}{4 \pi \beta} \sigma_{N N}^{\text {tot }} \exp \left(-\frac{\boldsymbol{b}^{2}}{2 \beta}\right) \underbrace{}_{\text {(NN cross section) }}$

Summary

» σ_{cc} measurement is a new method to determine R_{p} of neutronrich isotopes.
» R_{p} determined from σ_{cc} for ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ are consistent with electron scattering experiment.
» The first measurement of R_{p} for ${ }^{19-24} \mathrm{O}$ is underway.
» The measured Rp will be used for first determination of neutron skin of O isotopes.
» The measured Rp will also verify various newly developed models.

Acknowledgements

Supervisor: Dr. Rituparna Kanungo
W.Horiuchi, F. Ameil, J. Atkinson, Y. Ayyad, S. Bagchi, D. Cortina-Gil, I. Dillmann, A. Estrade, A. Evdokimov, F. Farinon, H.Geissel, G. Guastalla, R. Janik, R. Knobel, J. Kurcewicz, Yu. A. Litvinov, M. Marta, M.Mostazo, I. Mukha, C. Nociforo, H.J. Ong, S. Pietri, A. Prochazka, C. Scheidenberger, B. Sitar, P.Strmen, M. Takechi, J. Tanaka, I. Tanihata, S.Terashima, J. Vargas, H.Weick, and J. S.Winfield

Thank You

Particle Identification(PID) for ${ }^{23} \mathrm{O}$

PID after veto rejection

Veto Detector \rightarrow Plastic scintillator to reject particles hitting at the edge of target

Glauber Model and occ

Glauber Model applied successfully to Boron isotopes

$$
\Gamma_{N N}(\boldsymbol{b})=\frac{1-i \alpha}{4 \pi \beta} \sigma_{N N}^{\text {tot }} \exp \left(-\frac{\boldsymbol{b}^{2}}{2 \beta}\right)
$$

where α is the ratio of the real to the imaginary part of ($\sigma_{\text {NN }}$) scattering amplitude in the forward direction,
$\left(\sigma_{p n}^{t o t}\right)$ is the pp (pn) total cross sections,
β is the slope parameter of the elastic scattering differential cross section.

$$
\beta_{p N}=\frac{1+\alpha_{p N}^{2}}{16 \pi} \sigma_{p N}^{\text {tot }}
$$

Limitations of isotope shift

Isotope shift: change in energy of atomic levels of different isotopes.

$$
\delta \nu_{A, A^{\prime}}=\delta \nu_{A, A^{\prime}}^{\mathrm{MS}}+K_{\mathrm{FS}} \delta\left\langle r^{2}\right\rangle_{A, A^{\prime}}
$$

Limitations
> low energy and good intensity beams difficult to produce for all neutron rich isotopes.
> Mass shift term dominates for O .
> Many body calculations complicated

K.Blaum et al.Phys. Scr. T152 (2013) 014017

Multisampling Ionization Chamber(MUSIC)

ounting Gas - CF_{4} ressure- 1 bar rimensions-200 x 80 x 00 mm

Bethe formula for energv loss

$$
\frac{-d E}{d s}=\frac{4 \pi Z_{p}^{2}}{m_{e} c^{2} \beta^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2} Z_{t} N_{t}\left(\ln \frac{2 m_{e} v^{2}}{I}-\ln \left(1-\beta^{2}\right)-\beta^{2}\right)
$$

Geometric average of signals from each anode gives us the energy loss

$$
d E_{\text {raw }}=\left(e_{1} \cdot e_{2} \cdot e_{3} \cdot e_{4} \cdot e_{5} \cdot e_{6} \cdot e_{7} \cdot e_{8}\right)^{1 / 8}
$$

Points correspond to mean of the peaks obtained from gaussian fit of each peak in MUSIC energy spectrum

Calibrated MUSIC spectrum

Time Projection Chamber

$$
\begin{aligned}
& y=w_{d} t_{a}+y_{o f f} \\
& x=w\left(t_{1}-t_{r}\right)+x_{o f f}
\end{aligned}
$$

$\$$
 TPC Detector Calibration

Schematic of scintillator fibres used for calibration of TPC

2 dimensional position spectrum showing structure of grid using stable beam.

Plastic scintillator

Scintillator:Energy deposited \longrightarrow light. PMT: Light \longrightarrow electrical pulse

Each scintillator (at F2 and F4) had photomultiplier modules on both sides which gives two measurements for each detector.

$$
\begin{array}{r}
T O F_{R R}=\left|T_{41 R}-T_{21 R}\right| \\
T O F_{L L}=\left|T_{41 L}-T_{21 L}\right| \\
T O F=\frac{\left(T O F_{R R}+T O F_{L L}\right)}{2}
\end{array}
$$

:- Calibration of TOF from Scintillator Detector

Time of flight is calibrated using stable primary beam with three different velocities.
beta *tof =Flight path +beta*tof offset
tof offset $=143497$
flight path $=113462$

beta $=$ flight path
TOF-TOFoffset

Chiral effective field theory

Production target

Charge Radii Relation to Point Proton Radii

Root mean square charge radius r_{c} is given by
$\left\langle r c^{2}\right\rangle=\left\langle r p^{2}\right\rangle+\left\langle R p^{2}\right\rangle+\frac{N}{Z}\left\langle R n^{2}\right\rangle+\frac{3 h^{2}}{4 m p^{2} c^{2}}$
r_{p} is the radius of point proton distribution of a nucleus R_{p} and R_{n} are the charge radii of free proton and free neutron last term is so called Darwin-Foldy term

Matter Radii Related to Point Proton Radii and point neutron radii

$$
\left\langle r m^{2}\right\rangle=\frac{Z}{A}\left\langle r_{p}^{2}\right\rangle+\frac{N}{A}\left\langle r n^{2}\right\rangle
$$

I. Tanihata et al. / Progress in Particle and Nuclear Physics 68 (2013) 215-313

Ion optics of Fragment separator

FRS working as an achromatic system with a dispersive mid-plane

Magnification $\longleftarrow\left(\begin{array}{cccccc}(x \mid x) & (x \mid a) & 0 & 0 & 0 & (x \mid \delta) \\ (a \mid x) & (a \mid a) & 0 & 0 & 0 & (a \mid \delta) \\ 0 & 0 & (y \mid y) & (y \mid b) & 0 & 0 \\ 0 & 0 & (b \mid y) & (b \mid b) & 0 & 0 \\ (s \mid x) & (s \mid a) & 0 & 0 & 1 & (s \mid \delta) \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.

$$
\begin{aligned}
\delta_{\mathrm{F} 2} & =\frac{1}{D_{\mathrm{B}}}\left[x_{\mathrm{F} 4}-(x \mid x)_{\mathrm{B}} x_{\mathrm{F} 2}\right] \\
& \delta_{\mathrm{F} 2}=\frac{p-p_{\mathrm{B}}}{p_{\mathrm{B}}}=\frac{\chi-\chi_{\mathrm{B}}}{\chi_{\mathrm{B}}} \quad \longrightarrow \chi=\left(1+\delta_{\mathrm{F} 2}\right) \chi_{\mathrm{B}}
\end{aligned}
$$

-8 Focal plane location using position from TPC

The x-position at the image plane is independent from the incident angle of the beam.

Nuclear Density distributions

Fermi or woods saxon form

$$
\rho(r)=\rho_{0} /(1+\exp ((r-c) / z))
$$

c is the radius of distribution to a point where density falls to half and z is diffuseness related to thickness of surface region.

Harmonic oscillator density

$$
\begin{aligned}
\rho(r) & =\rho_{0}\left(1+\alpha(r / a)^{2}\right) \exp \left(-(r / a)^{2}\right) \\
\alpha & =\alpha_{0} a_{0}^{2} /\left(a^{2}+\frac{3}{2} \alpha_{0}\left(a^{2}-a_{0}^{2}\right)\right) \\
a_{0}^{2} & =\left(a^{2}-a_{p}^{2}\right) A /(A-1) \\
\alpha_{0} & =(Z-2) / 3 ; \quad a_{p}^{2}=\frac{2}{3}\left\langle r^{2}\right\rangle_{\text {proton }}
\end{aligned}
$$

where a is the size parameter.

Proton Radii from $\sigma_{c c}$ Glauber Model

(R. J. Glauber:, 1959)

$$
\sigma_{R}=\iint[1-T(\mathbf{b})] d b
$$

»Nucleons follow straight lines trajectories .
$»$ Interaction of projectile and the target governed by individual nucleon nucleon cross section.

Probability of interaction $[p(b)] \propto \sigma_{n n,} \rho \mathrm{P}(\mathrm{r}, \mathrm{z})$ and $\rho_{\mathrm{T}}(\mathrm{r}, \mathrm{z}) \mathrm{dz}$

Proton radii measured from $\sigma c c$

Glauber Model applied successfully to B and C isotopes

Boron isotopes

(A. Estradé et al., Phys. Rev. Let.113, 132501,(2014)
$>A$ thick neutron skin of $0.51 \pm 0.11 \mathrm{fm}$ was observed in ${ }^{17} \mathrm{~B}$.

Carbon isotopes
R. Kanungo et al. Phys. Rev. Lett. 117, 102501 (2016).

Proton radii consistent with 3 N forces

180 Sigma CC variation with different NsameZ gate

Nuclear Structure from Nuclear Radii

For Stable Nucleus

I. Tanihata, R. Kanungo / C. R. Physique 4 (2003) 437-449
($\mathrm{R} \approx 3.5 \mathrm{fm}$)

$$
R \neq 1.2 A^{1 / 3}
$$

PID for 240
lb veto \& \& music41 tpc4 \& \& music41 asc41 \& \& music41_tpc5 \& \& sc41irt music41 \& \& Toflivstofrr

