Search for production of supersymmetric particles in final states with missing transverse momentum and multiple b-jets in 2015–2016 LHC p-p collision data with the ATLAS detector

Louis-Guillaume Gagnon, PhD student, Université de Montréal

WNPPC 2018

Supersymmetry

- ► Extension of the Standard Model which associates new particles to each SM particle
- Can solve simultaneously many problems with SM:
 - Hierarchy problem
 - Dark matter
 - Unification of couplings
 - ▶ µ g 2
 - •

Simplified models

- ► If SUSY solves hierarchy problem: stop, sbottom, gluino relatively light
 - In such models, lots of third-generation quarks in final states!
- ▶ Motivates searches using simplified models of pair-produced gluinos: [1711.01901]

• Gtt:
$$\tilde{g} \rightarrow t + t + \tilde{\chi}_1^0$$

• Gtb:
$$\tilde{g} \to t + b + \tilde{\chi}_{1_0}^{\pm} \to f + f' + \tilde{\chi}_{2_0}^{\pm}$$

- Gbb: $\tilde{g} \to b + b + \tilde{\chi}_1^0$
- Scenarios with different decays for both gluinos also considered
- Two $\tilde{\chi}_1^0$ in all final states \implies high E_T^{miss}

Objects

- Small-radius jets:
 - anti-kT algorithm with radius = 0.4
 - Reconstructs quarks and gluon jets
- ► *b*-jets
 - Small-radius jets indentified as originating from b-quark by multivariate algorithm
- Large-radius jets
 - ► Small-radius jets *reclustered* using anti-kT with radius = 0.8
 - ► Reconstructs boosted top-quarks and *W*-bosons
- Leptons
 - Electrons or muons
- Missing transverse momentum (E_T^{miss})
 - Negative vector sum of momenta of all selected objects
 - "Soft" term computed from tracks from primary vertex but not associated with objects

Figure: 2 small-R jets reclustered into a single large-R jet

Search strategy, part I

- ▶ Preselection: $E_T^{miss} > 200 \text{ GeV} + \text{trigger}$, $\geq 4 \text{ small-radius jets}$, $\geq 2 \text{ b-jets}$
- Split in = 0 and \geq 1 lepton channels
- Define signal regions by setting thresholds on a few key observables
- ▶ Discovery: simple cut-and-count analysis with 10 signal regions
- ▶ Exclusion: Simultaneous ("multi-bin") fit of 14 orthogonal signal regions
- Different signal regions target different regimes of $|m_{\tilde{g}} m_{\tilde{\chi}_1^0}|$:

- A → large mass splitting
- B → intermediate mass splitting
- C → small mass splitting

Signal regions observables: E_T^{miss} , N_b

Some of the variables used for signal region definitions

- Typically require > 250 500 GeV of E_T^{miss}
- Typically require $\geq 6 8$ small-R jets!
- *b*-jet multiplicity also used

Observables: m_{eff} , M_J^{Σ}

- ► Some of the variables used for signal region definitions
- ▶ m_{eff} : "effective mass": sum of p_T of small-radius jets and leptons, and E_T^{miss}
- M_i^{Σ} : sum of masses of the 4 leading large-radius jets

Figure: [1711.01901]

- ▶ Typical *m*_{eff} cut between 1 and 2.8 TeV!
- Typical M_J^{Σ} cut between 100 and 300 GeV

- Summary of variables used:
 - $\blacktriangleright N_j, N_b, E_T^{miss}, m_{eff}, M_J^{\Sigma}, m_T, m_{T,b}^{min}$
- CR: Background-enriched control regions: Used to fit the background normalization (data over simulation)
- SR: Signal-enriched regions to perform search. Background expectation scaled using control region fit results
- VR: Intermediate validation regions to verify background normalization

observable 1

 \blacktriangleright Cut-and-count analysis: No excess $\textcircled{\sc s}$

Figure: [1711.01901]

- Multi-bin analysis: used to set limits on various models
- ho pprox 2 σ excess in SR-0L-HH, will be cross-checked with 2017 data

- multi-bin analysis
- ▶ $\approx 2\sigma$ excess in one bin lowers the observed limit for model with Br(gluino→tops) = 100%

- Use mixed samples to derive limits as function of gluino branching ratios to *tt*, *bb*, and *tb*
- Probes how limits change when branching ratios are relaxed
- \blacktriangleright Very useful for theorists
- Hashing indicates excluded side
- ► Dashed line: expected, Solid line: observed

Figure: [1711.01901]

EXPERIMENT Run: 308047 Event: 684427250

2016-09-08 04:49:33 CEST SR: Gbb B, Gtt 0-lepton B

BACKUP

CMS results

Samples

Process	Event Generator + fragmentation/hadronisation	Tune	PDF set	Cross-section order
SUSY signal	MadGraph5_aMC@NLO v2.2.2 + Pythia v8.186	A14	NNPDF2.3	NLO+NLL [56,57,58,59,60,61]
$tar{t}$	Powheg-Box v2 + Pythia v6.428	PERUGIA2012 CT10		NNLO+NNLL [63]
Single top	Powheg-Box v1 or v2 + Pythia v6.428	PERUGIA2012	CT10	NNLO+NNLL [64,65,66]
$t\bar{t}W/t\bar{t}Z/4$ -tops	MadGraph5_aMC@NLO v2.2.2 + Pythia v8.186	A14	NNPDF2.3	NLO [67]
$t\bar{t}H$	MadGraph5_aMC@NLO v2.2.1 + Herwig++ v2.7.1	UEEE5	CT10	NLO [68]
Diboson WW, WZ, ZZ	Sherpa v2.1.1	Default	CT10	NLO [46]
$W/Z + \mathbf{jets}$	Sherpa v2.2.0	Default	NNPDF3.0	NNLO [69]

Objects (in-depth)

- Small-Radius jets
 - Anti-kT algorithm with radius parameter = 0.4
 - ► Calibrated to particle-level with data and simulation-extracted jet energy scale
 - ► Jets from non-collision sources or detector noise rejected
 - MVA used to reject pile-up jets
 - Candidate jets: $p_T > 20$ GeV, $|\eta| < 2.8$
 - After overlap-removal with leptons: $p_T > 30 \text{ GeV}$
- ► Large-Radius jets
 - ▶ Small-radius jets *reclustered* using anti-kT with radius = 0.8 (after overlap removal)
 - \blacktriangleright "Trimming": subjets with pT fraction <10% of re-clustered jet removed
 - $p_T > 100$ GeV, $|\eta| < 2.0$
- b-jets
 - b-tagging working point: 77% efficiency
 - Rejection: c: 6, τ : 22, light quarks/gluons: 134
 - MVA using information about impact parameter of matched tracks, presence of displaced secondary vertices and reconstructed flight paths of b and c quarks within the jets
 - ► [1512.01094]
 - ► <u>ATL-PHYS-PUB-2016-012</u>

Electrons

- ► Energy clusters in electromagnetic calorimeter matched to inner detector tracks
- $p_T > 20$ GeV, $|\eta < 2.47|$
- Set of "loose" quality criteria
- ► [1407.5063]
- ATLAS-CONF-2016-024
- Muons
 - Muon spectrometer tracks matched to inner detector tracks
 - $p_T > 20$ GeV, $|\eta < 2.5|$
 - Set of "medium" quality criteria
 - ► [1603.05598]

- 1. Electron closer than $\Delta R = 0.01$ from muon removed
 - Suppress contribution from muon bremsstrahlung
- 2. Discard non-b-tagged jets closer than $\Delta R = 0.2$ from electron
 - Suppress contribution from showering of prompt electrons
- 3. Discard electrons with $E_T < 50$ GeV closer than $\Delta R = 0.4$ from jet. If $E_T > 50$ GeV, threshold is $\Delta R = min(0.4, 0.04 + 10 GeV/E_T)$
 - Supress contribution from electrons produced in hadron decay chain

Figures: [1711.01901]

Observables: m_{eff} , M_J^{Σ}

- ▶ m_{eff} : "effective mass": sum of p_T of small-radius jets and leptons, and E_T^{miss}
- M_i^{Σ} : sum of masses of the 4 leading large-radius jets

Figures: [1711.01901]

Figures: [1711.01901]

		Gtt 1	l-lepton															
Criteria common	to all regions:	$\geq 1~{\rm s}$	ignal lep	ton, p_{T}^{jet}	> 30 Ge	V, N_{b-jets}	≥ 3				(Gtt 0-1	lepton					
Targeted kinematics	Type	$N_{\rm jet}$	$m_{\rm T}$	$m_{\rm T,min}^{b\text{-jets}}$	$E_{\rm T}^{\rm miss}$	$m_{ m eff}^{ m incl}$	M_J^{Σ}	Criteria common to all regions: $p_{\rm T}^{\rm jet} > 30 {\rm ~GeV}$										
Desire D	\mathbf{SR}	≥ 5	> 150	> 120	> 500	> 2200	> 200	Targeted kinematics	Type	$N_{ m lepton}$	$N_{b\text{-jets}}$	$N_{\rm jet}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$m_{\mathrm{T,min}}^{b\text{-jets}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{\rm eff}^{\rm incl}$	M_J^{Σ}
(Boosted, Large	Region B CR = $5 < 150 - > 300 > 1700 > 150$ Boosted Large	Pasion P	SR	= 0	> 3	> 7	> 0.4	-	> 60	> 350	> 2600	> 300						
Δm)	$VR-m_T$	≥ 5	> 150	-	> 300	> 1600	< 200	$\begin{array}{c} & \text{Region B} \\ \hline & (\text{Boosted, Large} \\ \hline & 00 & \Delta m) \end{array}$	CR	= 1	> 3	> 6	_	< 150	_	> 275	> 1800	> 300
	$VR-m_{T,min}^{b-jets}$	> 5	< 150	> 120	> 400	> 1400	> 200		VR	= 0	> 3	> 6	> 0.4	_	_	> 250	> 2000	< 300
	\mathbf{SR}	≥ 6	> 150	> 160	> 450	> 1800	> 200		SD	- 0	~ 2	~ 7	> 0.4		> 120	> 500	> 1800	> 200
Region M	CR	= 6	< 150	-	> 400	> 1500	> 100	Region M	CD	= 0	2.0	21	> 0.4	- 150	> 120	> 300	> 1800	> 200
(Moderate Δm)	$VR-m_T$	≥ 6	> 200	_	> 250	> 1200	< 100	(Moderate Δm)	CR	= 1	23	≥ 0	_	< 150	-	> 400	> 1700	> 200
	$VR-m_T^{b-jets}$	> 6	< 150	> 140	> 350	> 1200	> 150		VR	= 0	≥ 3	≥ 6	> 0.4	-	-	> 450	> 1400	< 200
	1,000							Region C	\mathbf{SR}	= 0	≥ 4	≥ 8	> 0.4	-	> 120	> 250	> 1000	> 100
Pagion C	SR	≥ 7	> 150	> 160	> 350	> 1000	-	(Compressed,	CR	= 1	≥ 4	≥ 7	_	< 150	-	> 250	> 1000	> 100
(Compressed, small	CR	= 7	< 150	-	> 350	> 1000	-	moderate Δm)	VR	= 0	> 4	> 7	> 0.4	_	_	> 250	> 1000	< 100
(Compressed, small Δm)	$VR-m_T$	≥ 7	> 150	< 160	> 300	> 1000	-			-	_							
	$VR-m_{T,min}^{b-jets}$	> 7	< 150	> 160	> 300	> 1000	-											

Observables: m_T , $m_{T,min}^{b-jets}$

- ► m_T : "transverse mass": Attempt to measure W mass using leading lepton and E_T^{miss} in \geq 1-lepton events
- $m_{T,min}^{b-jets}$: inspired by m_T but use b-jets instead of lepton.
 - Starting with the 3 leading b-jets, use the b-jet leading to minimal m_T^{b-jets}

Gbb cut-and-count SR/VR/CR

					\mathbf{Gbb}				
		Criteria	a commor	n to all re	gions: N	$j_{\text{jet}} \ge 4, p_{\text{T}}$	$\Gamma^{\rm jet} > 30~{\rm G}$	eV	
Targeted kinematics	Type	$N_{\rm lepton}$	$N_{b\text{-jets}}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$m_{\rm T,min}^{b\rm -jets}$	$E_{\rm T}^{\rm miss}$	$m_{ m eff}$	Others
Region B	\mathbf{SR}	= 0	≥ 3	> 0.4	_	-	> 400	> 2800	_
(Boosted, Large	\mathbf{CR}	= 1	≥ 3	-	< 150	_	> 400	> 2500	_
$\Delta m)$	\mathbf{VR}	= 0	≥ 3	> 0.4	_	-	> 350	1900 - 2800	_
Region M (Moderate Δm)	\mathbf{SR}	= 0	≥ 4	> 0.4	_	> 90	> 450	> 1600	_
	\mathbf{CR}	= 1	≥ 4	_	< 150	_	> 300	> 1600	_
	\mathbf{VR}	= 0	≥ 4	> 0.4	-	> 100	250 - 450	1600 - 1900	_
Region C	\mathbf{SR}	= 0	≥ 4	> 0.4	_	> 155	> 450	_	_
(Compressed, small	\mathbf{CR}	= 1	≥ 4	_	< 150	_	> 375	-	_
$\Delta m)$	\mathbf{VR}	= 0	≥ 4	> 0.4	_	> 125	350 - 450	_	_
Region VC	\mathbf{SR}	= 0	≥ 3	> 0.4	_	> 100	> 600	_	:
(Very Compressed,	\mathbf{CR}	= 1	≥ 3	-	< 150	-	> 600	_	$p_{\rm T}^{\rm J_1} > 400, {\rm j}_1 \neq b, \\ \Delta \phi^{\rm j_1} > 2.5$
very small Δm)	\mathbf{VR}	= 0	≥ 3	> 0.4	-	> 100	225 - 600	_	$\Delta \varphi > 2.0$

multi-bin high- N_j SR/VR/CR

$\operatorname{High}-N_{\operatorname{jet}}$ regions													
		\mathbf{Cr}	iteria con	nmon to a	all regi	ons: $N_{b\text{-jets}} \ge 3$, $p_T^{\text{jet}} >$	$\sim 30 \mathrm{GeV}$						
Targeted kinematics	Type	$N_{\rm lepton}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$N_{\rm jet}$	$m_{ m T,min}^{b ext{-jets}}$	M_J^Σ	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{\rm eff}$				
	SR-0L	= 0	> 0.4	_	≥ 7	> 100	> 200	> 400	> 2500				
$High-m_{eff}$	SR-1L	≥ 1	-	> 150	≥ 6	> 120	> 200	> 500	> 2300				
(HH)	\mathbf{CR}	≥ 1	-	< 150	≥ 6	> 60	> 150	> 300	> 2100				
(Large Δm)	VR-0L	= 0	> 0.4	-	≥ 7	$<$ 100 if $E_{\rm T}^{\rm miss}>300$	-	<300 if $m_{\rm T,min}^{b\text{-jets}}>100$	> 2100				
	VR-1L	≥ 1	-	> 150	≥ 6	<140 if $m_{\rm eff}>2300$	-	< 500	> 2100				
	SR-0L	= 0	> 0.4	_	≥ 9	> 140	> 150	> 300	[1800, 2500]				
Intermediate- $m_{\rm eff}$	SR-1L	≥ 1	-	> 150	≥ 8	> 140	> 150	> 300	[1800, 2300]				
(HI)	\mathbf{CR}	≥ 1	-	< 150	≥ 8	> 60	> 150	> 200	$\left[1700, 2100\right]$				
(Intermediate Δm)	VR-0L	= 0	> 0.4	-	≥ 9	<140 if $E_{\rm T}^{\rm miss}>300$	-	<300 if $m_{\rm T,min}^{b\text{-jets}}>140$	$\left[1650, 2100\right]$				
	VR-1L	≥ 1	-	> 150	≥ 8	<140 if $E_{\rm T}^{\rm miss}>300$	-	<300 if $m_{\rm T,min}^{b\text{-jets}}>140$	$\left[1600, 2100\right]$				
	SR-0L	= 0	> 0.4	_	≥ 9	> 140	_	> 300	[900, 1800]				
Low- $m_{\rm eff}$	SR-1L	≥ 1	-	> 150	≥ 8	> 140	-	> 300	[900, 1800]				
(HL)	\mathbf{CR}	≥ 1	-	< 150	≥ 8	> 130	-	> 250	[900, 1700]				
(Small Δm)	VR-0L	= 0	> 0.4	-	≥ 9	< 140	-	> 300	[900, 1650]				
	VR-1L	≥ 1	-	> 150	≥ 8	< 140	-	> 225	[900, 1650]				

$\mathbf{Intermediate}$ - $N_{\mathbf{jet}}$ regions												
		Criter	ia commo	on to all r	regions:	$N_{b\text{-jets}} \geq 3, {p_{\mathrm{T}}}^{\mathrm{jet}} > 30$	GeV					
Targeted kinematics	Type	$N_{ m lepton}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$N_{ m jet}$	$\mathbf{j}_1 = b \text{ or } \Delta \phi^{\mathbf{j}_1} \leq 2.9$	$m_{\mathrm{T,min}}^{b ext{-jets}}$	M_J^{Σ}	$E_{\rm T}^{\rm miss}$	$m_{ m eff}$		
	SR-0L	= 0	> 0.4	_	[7, 8]	1	> 140	> 150	> 300	[1600, 2500]		
Intermediate- $m_{\rm eff}$	SR-1L	≥ 1	-	> 150	[6, 7]	_	> 140	> 150	> 300	[1600, 2300]		
(II)	\mathbf{CR}	≥ 1	_	< 150	[6, 7]	1	> 110	> 150	> 200	[1600, 2100]		
(Intermediate Δm)	VR-0L	= 0	> 0.4	_	[7, 8]	1	< 140	_	> 300	[1450, 2000]		
	VR-1L	≥ 1	-	> 150	[6,7]	-	< 140	_	> 225	$\left[1450,2000\right]$		
	SR-0L	= 0	> 0.4	_	[7, 8]	1	> 140	_	> 300	[800, 1600]		
Low- $m_{\rm eff}$	SR-1L	≥ 1	_	> 150	[6,7]	_	> 140	_	> 300	[800, 1600]		
$(IL) (Low \Delta m)$	\mathbf{CR}	≥ 1	_	< 150	[6,7]	1	> 130	_	> 300	[800, 1600]		
	VR-0L	= 0	> 0.4	_	[7, 8]	1	< 140	_	> 300	[800, 1450]		
	VR-1L	≥ 1	-	> 150	[6,7]	-	< 140	-	> 300	[800, 1450]		

multi-bin low-N_j SR/VR/CR

	$\operatorname{Low-N_{jet}}$ regions													
Criteria common to all regions: $N_{b\text{-jets}} \ge 3, \ p_{\text{T}}^{\text{jet}} > 30 \text{ GeV}$														
Targeted kinematics	Type	$N_{ m lepton}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$N_{\rm jet}$	$\mathbf{j}_1 = b \text{ or } \Delta \phi^{\mathbf{j}_1} \leq 2.9$	$p_{\mathrm{T}}^{\mathrm{j}_4}$	$m_{\rm T,min}^{b\rm -jets}$	$E_{\rm T}^{\rm miss}$	$m_{\rm eff}$				
High-most	\mathbf{SR}	= 0	> 0.4	_	[4, 6]	-	> 90	-	> 300	> 2400				
(LH)	\mathbf{CR}	≥ 1	-	< 150	[4, 5]	-	-	-	> 200	> 2100				
(Large Δm)	\mathbf{VR}	= 0	> 0.4	-	[4, 6]	-	>90 if $E_{\rm T}^{\rm miss}<300$	-	> 200	[2000, 2400]				
Intermediate- m_{eff}	\mathbf{SR}	= 0	> 0.4	-	[4, 6]	1	> 90	> 140	> 350	[1400, 2400]				
(LI)	\mathbf{CR}	≥ 1	_	< 150	[4, 5]	1	> 70	-	> 300	[1400, 2000]				
(Intermediate Δm)	\mathbf{VR}	= 0	> 0.4	-	[4, 6]	1	> 90	< 140	> 300	[1250, 1800]				
Low- $m_{\rm eff}$	\mathbf{SR}	= 0	> 0.4	-	[4, 6]	1	> 90	> 140	> 350	[800, 1400]				
(LL)	\mathbf{CR}	≥ 1	-	< 150	[4, 5]	1	> 70	-	> 300	[800, 1400]				
(Low Δm)	\mathbf{VR}	= 0	> 0.4	-	[4, 6]	1	> 90	< 140	> 300	[800, 1250]				

	ISR regions														
Criteria c	Criteria common to all regions: $N_{b\text{-jets}} \ge 3$, $\Delta \phi^{j_1} > 2.9$, $p_{T_1}^{-j} > 400$ GeV, $p_{T}^{-jet} > 30$ GeV, $j_1 \neq b$														
Type	$N_{\rm lepton}$	$\Delta \phi_{\rm min}^{\rm 4j}$	m_{T}	$N_{\rm jet}$	$m_{\mathrm{T,min}}^{b\text{-jets}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{\rm eff}$								
\mathbf{SR}	= 0	> 0.4	-	[4, 8]	> 100	> 600	< 2200								
CR	≥ 1	-	< 150	[4, 7]	-	> 400	< 2000								
VR	= 0	> 0.4	-	[4, 8]	> 100	> 250	< 2000								

Systematic uncertainties

Pre-fit yields in CR: multi-bin

