

Neutronics for new UCN source

Tatsuya Kikawa (TRIUMF) for the TUCAN collaboration

KEK-TRIUMF symposium December 14, 2017

New UCN source

- Goal of next generation neutron EDM search: 10⁻²⁷e·cm
- Statistical error is dominant in the recent neutron EDM search.
- Upgrade of the UCN source is essential.
- Requirements to new UCN source.
 - High UCN production rate (>2.3×10⁷ UCN/sec.).
 - High UCN transportation rate (>4%).
 - Low heat deposit in He-II (<5W).
 - Low activation of UCN source.
 - High heat transfer in He-II.
 → Reported by Okamura-san.

Original plan of new UCN source

- He-II must be kept cold to suppress UCN upscattering.
- Cooling power of current cryostat is not enough for 20kW beam.
- Original plan of new UCN source.
 - Heat exchanger with ³He is 3m distant from UCN production volume.
 - He-II is confined by aluminum foil.
 - UCN storage volume is filled with He-II.
 - Target temperature of He-II is < 0.8K.

Heat transfer issue

- Heat transfer of original design was found to be not enough.
- It can be improved by enlarging UCN guide diameter.
- But large-diameter UCN guide decreases UCN density.

Updated plan of new UCN source

- Moderated the target temperature of He-II to 1.0-1.2K.
 - Confine He-II by gravity.
 - Reduce He-II volume ratio to 25% level.
- Cooling method options.
 - Heat exchange with ³He (primary).
 - Direct pumping of He-II (alternative).

He-II bottle and UCN extraction

- UCN storage lifetime in He-II bottle is proportional to ratio of volume / surface area. (Bottle shape does not matter.)
- If extraction height is large, only low energy UCN are extracted. (Low energy UCN are more Extraction height useful for EDM measurement.)

Beam irradiation time and valve operation

- Beam irradiation time and valve operation is being optimized.
 - Steady mode: Valve is always open.
 - Batch mode: Valve opens after beam.

7

Spin flip effect

• Spin flip before valve will increase UCN density in EDM cell. (Spin flip after valve was assumed to be 0.)

Steady mode (spin flip prob. = 0)Batch mode (spin flip prob. = 0)Steady mode (spin flip prob. = 0.001)Batch mode (spin flip prob. = 0.001)Steady mode (spin flip prob. = 0.1)Batch mode (spin flip prob. = 0.1)

Activation of cryostat

- He-II cryostat must be placed near the UCN production volume to reduce the He-II volume ratio.
- Activation of cryostat is a large concern.
- It can be reduced by making the cryostat with aluminum and placing lead + B₄C shield around the cryostat.

Residual dose rate after 8 months of beam (20kW×25% duty cycle) and 1 month of cooling.

Existing cryostat (made of stainless)

Tritium production in ³He

- Tritium is produced in ³He. ³He + $n \rightarrow$ ³H + p
- It can be reduced by placing B₄C shield around heat exchanger.

Upgrade of neutron moderator

- We are currently using D₂O moderator.
- Liquid D₂ moderator will increase the cold neutron flux to superfluid helium (*i.e.* UCN production rate).
- Safety issue: liquid D₂ is explosive.
- Optimizing the geometry by MC simulation.

Optimization of neutron moderator

- Geometry of the neutron moderator is being optimized by MC simulation in terms of UCN production rate and heat deposit. (W. Schreyer)
- Discussing safety issue with TRIUMF safety group.

Three layer neutron moderator

- Liquid D₂ volume should be small for safety.
- It can be reduced without losing UCN production rate by adopting the three layer structure of warm and cold D₂O and liquid D₂.

Summary

- Upgrade of UCN source in the TUCAN experiment is essential for the world most precise measurement of neutron EDM.
- Basic conceptual design of the new UCN source was substantially modified.
- Optimization by Monte Carlo simulation is ongoing.
- Aiming to determine final design in 2018, start fabrication in 2019 and start operation in 2021.