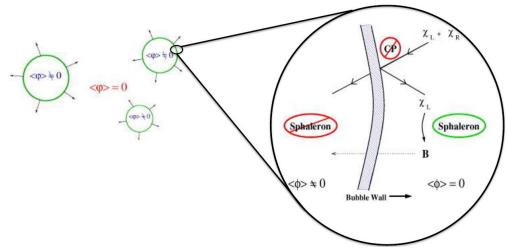
Neutron Electric Dipole Moment Experiment using UCN

The TUCAN Collaboration


<u>S. Ahmed</u>^{3,4}, <u>E. Altiere</u>², <u>T. Andalib</u>^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, <u>M. Das</u>^{3,4}, C. Davis⁵, B. Franke⁵,
M. Gericke⁴, <u>S. Hansen-Romu</u>^{3,4}, K. Hatanaka⁶, T. Hayamizu², B. Jamieson³, D. Jones², K. Katsika⁵,
S. Kawasaki¹, T. Kikawa^{5,6,1}, M. Kitaguchi¹⁰, <u>W. Klassen</u>^{3,4}, A. Konaka^{5,8}, E. Korkmaz⁷, <u>M. Lang</u>³,
T. Lindner^{5,3}, K. Madison², Y. Makida¹, J. Mammei⁴, R. Mammei^{3,5}, J. Martin³, R. Matsumiya⁶, <u>E. Miller</u>²,
K. Mishima¹, T. Momose², T. Okamura¹, S. Page⁴, R. Picker^{5,9}, E. Pierre^{6,5}, W. Ramsay⁵, <u>L. Rebenitsch</u>^{3,4},
H. Shimizu¹⁰, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada
¹⁰Nagoya University, Nagoya, Japan

Spokespeople: J. Martin (Canada), K. Hatanaka (Japan)

Neutron Electric Dipole Moment

- High Science Priority
- If our UCN source can be completed in next 2-3 years, highly relevant to the world scene.

Progress

- First UCN production and detailed experiments Nov-Dec 2017.
- Good progress made on UCN source design. Weekly meetings and continual design discussions.
- Continuing to increase Japan-Canada collaboration, develop roles for new collaborators.

Project Management and Planning

- New Project Manager (Chris Gibson) hired at TRIUMF. Starting date Jan. 2, 2018. Experienced project manager with strong mechanical engineering background, experience working with Japan groups (companies).
- Collaboration agrees: Need to improve project management and planning.
 - Collaboration commits to complete list of R&D tasks for CDR with project management and task tracking.
- Collaboration agrees: TOP PRIORITY must be on new UCN source design.
 - Collaboration commits to limit operations at TRIUMF until > Sept. 2018 to force us to focus on completion of CDR and TDR. Will be included in project plan.

Project Scope – Draft version in progress

Detailed Project Scope for UCN (a scope summary will be presented for reviewers)

Triumf Document number - xxxxx

C. Marshall Dec/12/2017 – Rev 2

Not included in this scope

- Further work on existing beamline, water pack, D2O handling, or Target
- Experimental components such as shielded room, or magnetometer
- UCN Guide tube & valve system

The main components of the scope are		Responsibilities
-	Project Management	Prm/Tri/Jpn
-	Concepts development	Jpn/Tri
-	Physics Simulations	Jpn
-	Source Cryostat	Jpn
-	Source Cryostat support frame	Tri?
-	Source Cryostat testing/Shipping frame	jpn?
-	Source 3He & 4He Pumping system	Tri
-	Source Gas handling System	Jpn
-	Source control System	Tri?
-	Isopure Storage tank	Tri?
-	Source Interconnecting piping	Tri
-	Helium Transfer line	Tri
-	LD2 Cryostat	CM
-	LD2 Cryostat suport frame	CM
-	LD2 Report for BCSA	CM
-	LD2 Gas handling System	CM
-	LD2 Control System	Tri
-	LD2 Interconnecting piping	CM
	LD2 Reservoir System	CM
-	Biological Shielding	Tri

He-II Source Cryostat	Primary
Cryogenic Engineering	
- Design Concepts	Jpn/Tri
 Heat transport from Bottle 	то
 Required cryogen flow rates 	
> Source cooling	SK
> 4He & 3He pot fill rates	SK
> Shield cooling flows	SK
> 4K bath fill rate	SK
> Loss of Vacuum relief sizing	SK
 Schematic-internal vessels, shields, piping, valves & sensors 	
 Heat exchanger sizing (7? Exchangers) 	то
- Sizing of internal vessels	SK
 Sizing of Needle valve impedances. 	SK
- Superinsulation spec	SK
- Static heat loads	SK
 Sizing of Vacuum pumps & Connected piping 	SK
- Specification of sensors	SK
 Specification of gas storage volume & Pressure 	SK
Mechanical Engineering	Primary
 Interface design to Cold Moderator 	

- <u>Draft</u> detailed scope at conceptual level.
- Input to WBS and project plan.

Jan.-May 2018

1) Come to agreement on concept (Source with moderator)

- 2) <u>Prepare for Concept Design</u> Requirements Document

- Calculations & drawings in support of one or two concepts

- Scope Document (Feeds Work breakdown structure)

- Organizational Structure & Initial work breakdown Structure

- Initial Budget
- Roles and Responsibilities
- Management plan for control of Scope, Configuration, and cost.
 - Initial Hazard Analysis
 - Risk Registry

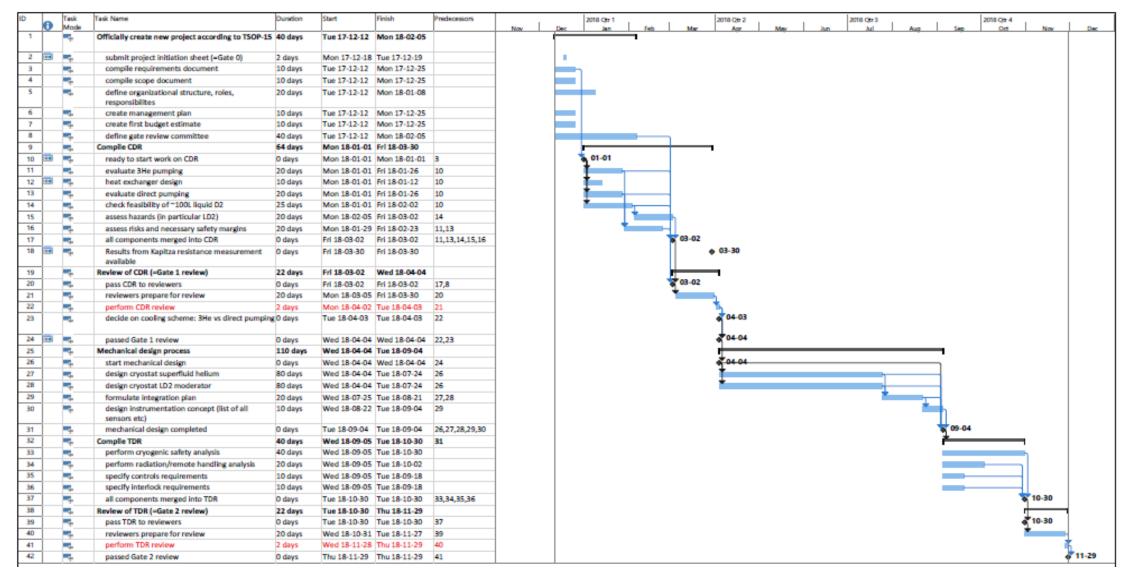
3) Secure a panel for the review

4) Concept Design Review (Gate 1)

May-Dec. 2018

5) Technical Design

- Detailed Physics calculations & simulations
- Delated Engineering calculation & specifications
- Drawings


6) Secure a panel for Technical design review(s) (various preliminary design reviews are often held in advance of Gate 2

7) Technical Design review (Gate 2)

8) Revisions & proceed to manufacturing

After Dec. 2018:

Procurement, assembly & testing, installation, safety/operational review, commissioning.

 Plan to complete technical design by late 2018 needs resource loading and input of new Project Manager.

Key milestones (goals)

• Full merged CDR sent to reviewers

- March 2, 2018
- Results of KEK Kapitza resistance and thermal conduction measurements
 March 30, 2018
- CDR Review (=~ TRIUMF Gate 1 review) Apr
- TDR completed
- TDR Review (=~ TRIUMF Gate 2 review)

April 4, 2018 September 4, 2018

October 30, 2018

Ongoing R&D – technical tasks for CDR

- Temperature gradient in 4He. Difficult to measure; analyze measurements with vertical source (ongoing).
- Kapitza conductance and temperature gradient measurement (KEK). Experiment being designed and planned. Probably 2-3 months, to be done early 2018.
- Neutron captures in 3He and Cu, additional radiation heat load to 3He pot.
- General layout and impact on mechanical design.
- Clogging. Reportedly an issue in other cryostats. Was an issue in our cryostat in summer 2017. Solved! Operation reliable for 1 month. Issue is certainly related to purifier in 3He line and minimizing leaks.
- Suggestion that He-II source lifetime degrades over time due to freezing out contaminants. Initial data imply not a problem. Planned measurements interrupted. Plan to do next year with higher priority.
- Other ideas: purifier/getter for hydrogen, dual needle valves, remove needle valve and use orifice for JT, heater around orifice, ...
- Key technology question of 3He fridge or direct 4He pumping needs more focus on direct pumping. TRIUMF+KEK to work together on this.
- Remote maintenance, radiation effects.
- Create extensive list of issues to be tackled. Task lists, and project management/tracking of tasks.

KEK and Japan groups

• KEK

- S. Kawasaki UCN source leader
- T. Okamura (& Y. Makida) UCN source cryogenics
- K. Mishima neutron moderation, UCN transport, diamond nanoparticles, VCN
- RCNP Osaka
 - K. Hatanaka cospokesperson; I. Tanihata EC member
 - Support to A. Konaka and E. Pierre (also TRIUMF)
 - Possibility to grow group in the future (international programs)
- Nagoya U
 - M. Kitaguchi & H. Shimizu VCN line, CN and VCN characterization, quantitative understanding of neutronics, transport and UCN storage,
 - Possibility to grow group in the future
- Other groups
 - New faculty members in Japan
 - Very welcoming of new collaborators from Japan institutes

Ideas for further collaboration/communication

- Short-term
 - Weekly skype meetings are not enough to complete CDR.
 - Continue technical discussions this afternoon and Monday, Dec. 18, 2017.
 - New UCN source "workshop" (working group) at TRIUMF -- Jan. 15-19, 2018.
- Longer-term
 - Continue to build relationship with Nagoya group through student projects.
 - Build groups at Japan universities and KEK.
 - Promotion of UCN science in Japan at conferences and workshops.

Funding scenarios in Japan

- Key question is funding of He-II cryostat.
- Cost ~\$500kCAD =~ 40MJPY.
- Could be supported over multiple years.
- JSPS support? KEK support?

Request to TRIUMF

- Maintain resource commitments at levels to move project forward
 - Cam Marshall is still an absolute requirement! (Engineer with extensive cryogenics experience.) LD₂ cryostat and engineering oversight (safety aspects). Additional cryogenics support would be welcomed.
 - Transfer of proton beamline and target responsibilities to Accelerator Division
 - Operations is close to completing transfer. Maintenance.
 - Completion of lingering hardware:
 - Raster magnet (if necessary) for 40 uA operation, optics studies.
 - Target cask.
- Retain \$1.6M support in present 5-year-plan (2015-2020)
- Consideration of collaboration request for next 5-year-plan (2020-2025)
 - Additional TRIUMF BAE's
 - Maintain UCN technical staff once CFI NIF/IOF support would be expended
 - Second liquefier, "upgrade" including cold return to UCN source

Request to KEK

- Approval in principle of the plan to reach "TDR/Gate 2".
- We can reach this stage with existing resources.
 - S. Kawasaki is a key resource and leader of most important part of experiment.
 - Cryogenic expertise necessary: T. Okamura, Y. Makida. Please keep/increase support from IPNS Cryo group.
 - K. Mishima (Materials Science, IMMS): Extensive CN, VCN, UCN experience. Generator of new ideas (diamond nanoparticles, VCN line, ...). Needs permanent position.
- After this time we expect to need increased resources (after ~Dec. 2018).
 - Need to complete UCN source cryostat construction & testing.
 - Estimate \$500kCAD =~ 40MJPY cost of UCN source cryostat.
 - Construction at e.g. JECC-Torisha; testing at KEK.
- Please commit to finding a solution to fund new He-II cryostat upon successful completion of TDR/Gate 2, via KEK+JSPS (scenarios discussed in parallel session).