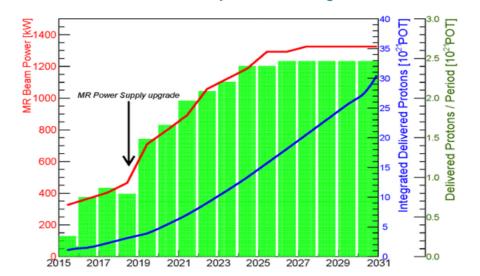


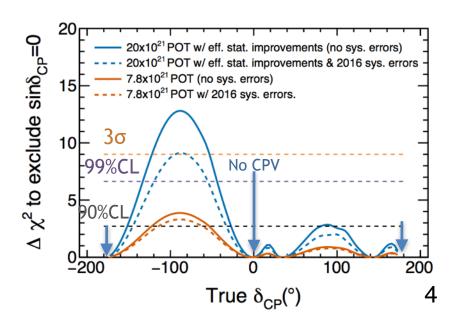
Canada's national laboratory for particle and nuclear physics and accelerator-based science

Status of the Canadian group and plan of T2K

T2K-Canada made essential contribution to T2K

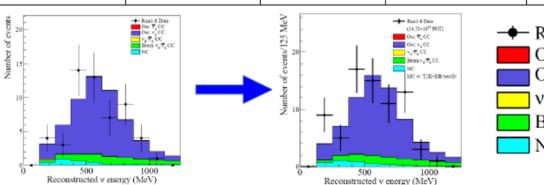

- Break-through concepts on all the areas
 - ν_e appearance and CP violation instead of τ appearance
 - off-axis beam, dual extraction/abort kicker
 - FODO lattice for extraction, service cell (hot cell)
 - OTR and SiPM technologies
 - Analysis: Beam analysis, BANFF, fiTQun
- Reliable and exceptional contributions to the detectors
 - FGD, TPC, OTR, remote handling: not possible without Canada
 - Slow control, Data base, t2k.org
- "Service" works
 - Computing: Local network, ND280 Tier-1, SK code to work outside Kamioka
 - ND280 scaffolding, cooling water, Dry air, Gas hut, Air conditioner in NA
 - Operation and calibration of FGD, TPC, and OTR
 - Analysis conveners and other positions

Status of the Canadian group


- The first phase of T2K-Canada collaboration is ending:
 - At TRIUMF, Akira Konaka is the only research scientist left with fraction of time by Thomas Lindner
 - 10 scientists at TRIUMF in addition to engineers during the early days of T2K
 - TRIUMF plans to strengthen the neutrino group: M.Hartz and a new staff
 - We are requested by TRIUMF to show our plan to continue
 - Departure of big contributors
 - FY2017: Hiro Tanaka (Toronto), Roman Tacik (TRIUMF/Regina)
 - End of FY2018: Dean Karlen (UVic), Scott Oser (UBC)
- Building up the renewed neutrino group with new goals
 - T2K-II program does not appear to resonate with the community
 - Always less than expected beam time, No prospect for E61(NuPRISM) during T2K-II
 - A program leading to HyperK is a baseline for the Canadian group
 - Program to challenge reducing the systematic uncertainties

T2K-II (ArXiv:1609.04111)

- T2K in the next decade (- 2026)
 - MR power supply upgrade requires funding
 - intensity to ramp up 0.4 to 0.75MW
 - Smaller upgrades expected from HK funding
 - to go up to 1.3MW
 - Horn current upgrade: x1.1 neutrino flux
 - x1.4 Acceptance improvement with FiTQun
 - half of this already done with larger fiducial volume


- T2K-II received Stage-1 by J-PARC PAC
 - 3σ CP violation sensitivity @ $\delta = -\pi/2$
 - \$60M/year continuous MR operation needed
 - Improvements in acceptance and systematic uncertainties are required:
 - ND280 upgrade is supposed to cover this (?)

fiTQun improvement in SK samples

Samples		fiTQun S	election	Original SK selection		
		Candidates	Purity	Candidates	Purity	
Neutrino beam	1-ring e-like	69.5	81.2%	56.5	81.4%	
	1-ring µ-like	261.6	79.7%	268.7	68.1%	
	1-ring, 1π, e-like	6.9	78.8%	5.6	72.0%	
Antineutrino beam	1-ring e-like	7.6	62.0%	6.1	63.7%	
	1-ring µ-like	62.0	79.7%	65.4	70.5%	

- Increased efficiency of electron-like samples
- 23% more events from same data

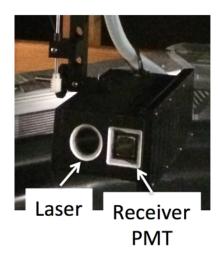
Run1-8 Data
Osc. \overline{v}_e CC
Osc. v_e CC v_μ/\overline{v}_μ CC
Beam v_e/\overline{v}_e CC
NC

Canadian initiatives on systematic uncertainties

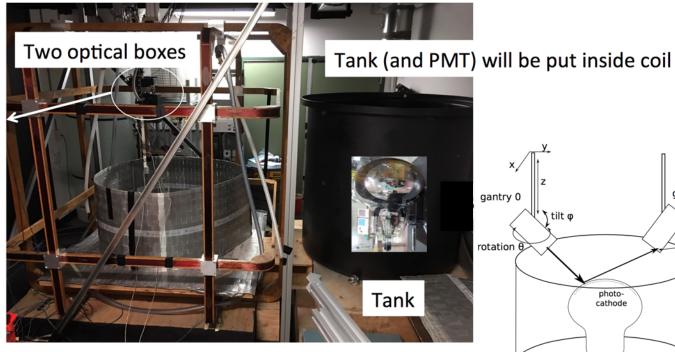
	% Errors on Predicted Event Rates, Osc. Parameter Set A							
	1R μ-	Like	1R e-Like					
Error Source	FHC	RHC	FHC	RHC	FHC CC1π	FHC/RHC		
SK Detector	1.86	1.51	3.03	4.22	16.69	1.60		
SK FSI+SI+PN	2.20	1.98	3.01	2.31	11.43	1.57		
ND280 const. flux & xsec	3.22	2.72	3.22	2.88	4.05	2.50		
$\sigma(v_e)/\sigma(v_\mu), \ \sigma(v_e)/\sigma(v_\mu)$	0.00	0.00	2.63	1.46	2.62	3.03		
ΝC1γ	0.00	0.00	1.08	2.59	0.33	1.49		
NC Other	0.25	0.25	0.14	0.33	0.98	0.18		
Total Systematic Error	4.40	3.76	6.10	6.51	20.94	4.77		

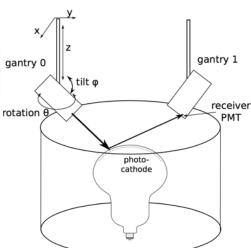
- Neutrino cross sections
 - IWCD (E61/NuPRISM)
 - v_e cross section
 - NC and beam v_e
 - Nuclear effect
 - Neutron tagging

- Detection efficiency (calibration)
 - E61 beam test @ Fermilab
 - Bottom-up calibration
- Neutrino flux
 - Hadron production experiment @ Fermilab
 - hybrid emulsion spectrometer

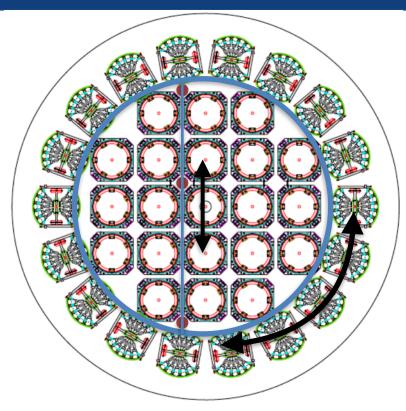

Canadian group's plan on T2K

- T2K program leading to the Canadian HyperK activities
 - Beam
 - OTR along with the Hadron production experiment @Fermilab
 - Remote handling/accelerator contributions if we get support from TRIUMF
 - SK
 - SK "bottom-up" calibration along with the E61 beam test @Fermilab
 - multi-ring analysis for T2K (CC1π) and SK (oscillogram, mass hierarchy)
 - ND280
 - Winding down the Canadian contributions to end in FY2018
 - Important to make a full transition by the end of March 2019
- Strengthening of the group and focus on program is required
 - E61 beam test, Hadron production, SK
 - E61(IWCD/NuPRISM) and HyperK for the future

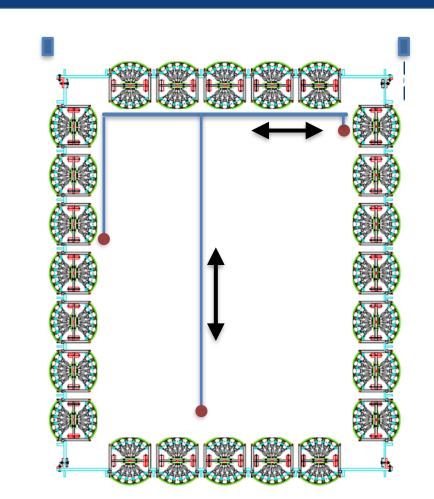



Photosensor Test Facility (PTF) at TRIUMF

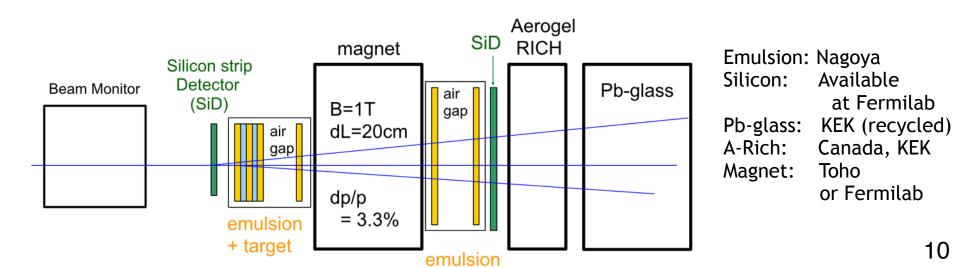
- Robotic arms with laser and PMT
 - laser light with polarization
 - monitor PMT
 - magnetometer



- Magnetic shielding
 - compensation coil, Giron shield



Laser source deployment system for E61 beam test



Use the same light source deployed at different positions (SNO calibration was in single plane)

Hadron production experiment at Fermilab

- Hybrid emulsion spectrometer
 - Emulsion+target, silicon strip, magnet, particle ID Cherenkov
 - minimize the material for precision emulsion tracking right next to target
- Secondary hadron beam at Fermilab (p,π, μ, e up to 120GeV/c)
 - Silicon strip detector at the facility to match the timing
- The first beam from January 2018 with the upstream components

Potential research program between T2K and HyperK

- T2K-NOvA combined analysis
- Hadron production experiment at Fermilab
 - Ring-imaging Cherenkov counter development
 - Reduction of neutrino flux systematics in T2K
 - Reduction in atmospheric neutrino flux systematics for SK
 - CP violation and oscillogram (matter effect) in atmospheric neutrinos
- E61 beam test at Fermilab
 - mPMT development
 - Detailed study of water Cherenkov responses for e, π, μ, K, and p
 - Test the bottom-up calibration method for SK
 - along with the SK PMT characterization at photosensor test facility
 - multi-ring analyses for T2K(CC1π) and SK(proton decays, mass hierarchy)
- R&D and design works for E61 and HyperK

Timelines

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
T2K/T2K-II/SK										
E61 beam test										
E61 facility										
E61 detector										
HK mPMT										
Hadron prod.										
	des	sign	constr	ruction	opera	ation				