KEK-TRIUMF Symposium @December 14, 2017

T2K Status and Plan — Canada and Japan —

T. Nakaya (Kyoto University)

Neutrino oscillation experiments in Japan Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ study

Super-K

• Side-Muon-Range Detector

The Canadian group has led T2K

- · An idea of off-axis beam and the beam line design
 - · OTR beam monitor
 - · Remote handling
 - $\cdot \,$ Beam flux estimation
- · ND280
 - · FGD (Fine-Grained-Detector)
 - · Proposal of SiPM (MPPC), MPPC developments, Electronics,
 - · TPC
 - · Network
 - \cdot Computing (and software) with data storage and MC production
 - · Common Infrastructure (Dry air, cooling, crane, clean tent, etc..)
- · Super-K
 - New algorithm (fiTQun)
 - · Hybrid-pi0 BG estimation
- \cdot Pion cross section measurements and tuning
- T2K web page
- · Analysis

New T2K results (summer 2017)

Seminar at KEK: <u>https://www.t2k.org/docs/talk/282</u>

Based on 89 ν_{e} and 7 $\overline{\nu}_{e}$ events

CP conserving values $(0,\pi)$ fall outside of the 2σ CL intervals

What's new this year!

· Double neutrino beam data in one year!

- · 7.48 x10²⁰ POT → 14.7x10²⁰ POT
- · We are collecting anti-neutrino beam data to be doubled before the next summer. Additional $\sim 3.5 \times 10^{20}$ POT data collected now.
- \cdot Increase the far detector fiducial volume!
 - · ~20% more events (w/ fiTQun)
- \cdot Adding a new event sample (CC-1 π) on $\nu_{\,\mathrm{e}}$
 - \cdot ~10% more events

T2K Data before summer 2017

Accelerator has achieved stable operation with 470 kW beam power

 14.7x10²⁰ protons-on-target (POT) in neutrino mode and 7.6x10²⁰ POT in antineutrino mode

Observation at Super-K

Expansion of the Fiducial Volume

Sample	Towall Cut	Wall Cut
CCQE 1-Ring e-like FHC	170 cm	80 cm
CCQE 1-Ring μ -like FHC	250 cm	50 cm
$CC1\pi$ 1-Ring e-like FHC	270 cm	50 cm
CCQE 1-Ring e-like RHC	170 cm	80 cm
CCQE 1-Ring μ -like RHC	250 cm	50 cm

Predictions and Observation

	Predicted Rates				Observed
Sample	$\delta_{\rm cp}$ =- $\pi/2$	$\delta_{cp}=0$	$\delta_{cp}=\pi/2$	$\delta_{ ext{cp}}=\pi$	Rates
e-like FHC	73.5	61.5	49.9	62.0	74
e-like+ π FHC	6.92	6.01	4.87	5.78	15
e-like RHC	7.93	9.04	10.04	8.93	7
μ -like FHC	267.8	267.4	267.7	268.2	240
μ -like RHC	63.1	62.9	63.1	63.1	68

 The number of observed events are largely in line with the predictions after oscillations

• The e-like samples have rates most consistent with the $\delta_{cp}=-\pi/2$ hypothesis

· The observed μ -like rate in neutrino mode is lower than prediction

· consistent within statistical and systematic errors

Systematic Errors

	% Errors on Predicted Event Rates (Osc. Para. A)					
	1R μ -like		1R e-like			
Error Source	FHC	RHC	FHC	RHC	FHC CC1 π	FHC/RHC
SK Detector	1.86	1.51	3.03	4.22	16.69	1.60
SK FSI+SI+PN	2.20	1.98	3.01	2.31	11.43	1.57
ND280 const. flux & xsec	3.22	2.72	3.22	2.88	4.05	2.50
$\sigma(\nu_{e})/\sigma(\nu_{\mu}), \sigma(\nu_{e})/\sigma(\nu_{\mu})$	0.00	0.00	2.63	1.46	2.62	3.03
NC1 r	0.00	0.00	1.08	2.59	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.98	0.18
Total Systematic Error	4.40	3.76	6.10	6.51	20.94	4.77

 Total error is in the 4-7% range. 4.8% error on the relative rate for neutrino mode and antineutrino mode samples

Measurement of δ_{cp} with reactor θ_{13}

The 1σ CL confidence interval:

Normal hierarchy: [-2.49, -1.23] radians

The 2σ CL confidence interval:

Normal hierarchy: [-2.98, -0.60] radians Inverted hierarchy: [-1.54, -1.19] radians

· CP conserving values (0, π) fall outside of the 2 σ CL intervals

θ_{23} octant and mass hierarchy

Bayesian analysis: natural way to infer data preference for θ_{23} octant or mass hierarchy

· Assume equal prior probability for both octant and hierarchy hypotheses

Fraction of steps from Markov Chain in each octant/hierarchy is posterior probability for the octant/hierarchy hypothesis

• T2K data prefers the normal hierarchy and upper octant

•

•

Posterior probabilities (with reactor constraint)

	$\sin^2 \Theta_{23} < 0.5$	$sin^2 \Theta_{23} > 0.5$	Sum
NH ($\Delta m^{2}_{32} > 0$)	0.193	0.674	0.868
IH ($\Delta m_{32}^2 < 0$)	0.026	0.106	0.132
Sum	0.219	0.781	

T2K-II (and Hyper-K)

Today

Normal mass hierarchy

Mass Hierarchy

 A hint of mass hierarchy may be seen. Within 5~10 years, we expect more information on mass hierarchy from SK atmospheric neutrinos, NOvA (+T2K), IceCube, ORCA and JUNO.

T2K-II with J-PARC Upgrade

T2K-II w/ improved stat. (10E21 POT for nu and 10E21 POT for anti-nu)

T2K-II Physics Sensitivity

- For which true δ_{CP} values can we find CP violation assuming true $\sin^2 \theta_{23}=0.43$, 0.50, 0.60?
 - The fractional region for which $\sin \delta_{CP}=0$ can be excluded at the 99% (3 σ) C.L. is 49% (36%) of possible true values of δ_{CP} assuming the MH is known.

(Note) Although T2K alone can't measure MH, we can help with the MH measurement by, ie, combining T2K + NOVA

 More physics for Neutrino Interactions and nonstandard models

- The Canadian and Japanese groups work in good collaboration, that makes a great discovery in T2K.
- CP violation in lepton sector is within the reach. In addition, there are rich physics programs in front of us.
 - Let's utilize the current facilities to explore new physics in neutrinos.
 - Let's work together to conduct the neutrino experiments for a discovery in particle physics.

