
Canada's national laboratory for particle and nuclear physics and accelerator-based science

Canadian plan on HyperK

Akira Konaka Dec.14, 2017

- Competitiveness
 - 1/3 of cost compared to DUNE/LBNF with "better/competitive" physics reach
 - The 2nd detector in Korea (T2HKK) would make the case even stronger
 - Well established technologies
 - Solid first class scientific output (CP) with new physics capability
- Decision to be made in 1-2 years based on progress on the following:
 - HK funding (187kton fiducial mass) [prospect?]
 - Sufficient beam operation (~3x10²¹POT/year) [commitment?]
 - Intermediate Water Cherenkov to control systematics [approval process?]
- Challenges (pointed out in the MEXT roadmap)
 - Expand and deepen international cooperation
 - Clarify relationship with the existing projects at the implementing institutions

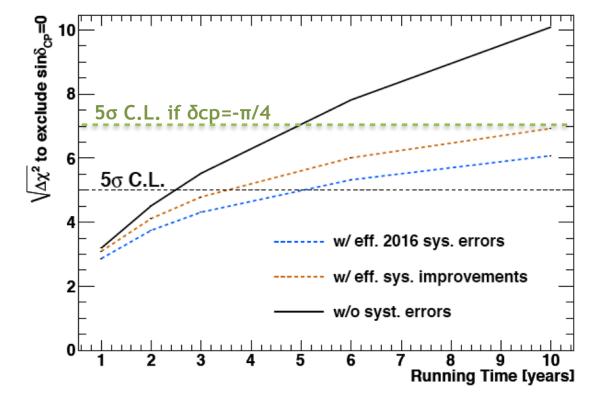
Neutrino Physics approach in Japan is excellent

40 kt LArTPC Normal Hierarchy 100 kt WCD 3.5+3.5 v+√ years ---- 50 kt WCD $\sin^2 2\theta_{13} = 0.085$ $\sin^2\theta_{23} = 0.45$ 15 10

CP Violation Sensitivity

- 100 kT WČ @ Homestake in LBNF has comparable/greater sensitivity than 40 kt LAr
 - important role of fiTQun (or at least sensible performance assumptions) in new sensitivity estimates
 - Previous assumption was that a LAr detector achieved equivalent sensitivity to a WČ detector 6 times in mass
 - now it is more like ~2, and even this assumes LAr performance assumptions that have not been demonstrated

MEXT roadmap 2017 report

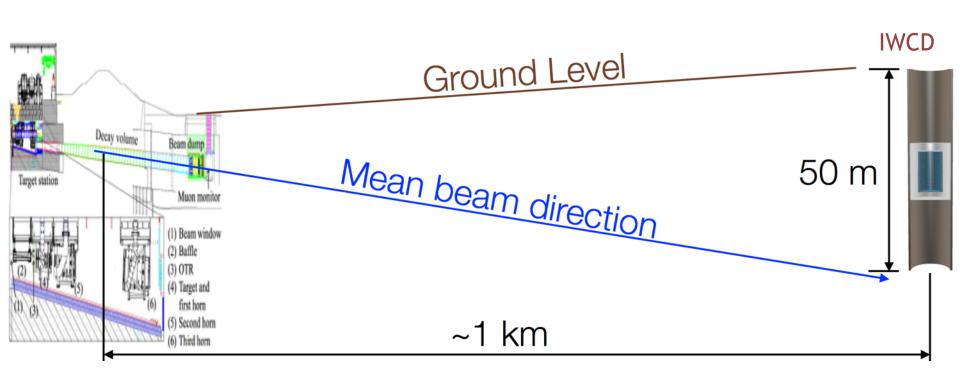

	Financial requirement (JPY 100 millions) ~\$1M	Eva lua tio n	Eva lua tio n	Main outstanding points, etc.	Main tasks, points to keep in mind, etc.
\$10M for the	Total 1547 (Japan's share: 1393) Hyper- Kamiokande: Construction 675 (551), Operation 400 over 20 years J-PARC: Operation 400 over 10 years Other: Accelerator upgrades etc. 72 (42)	a		maintain, but expand Japan's world-leading and internationally renown neutrino and nucleon decay physics research program. Preparations for the start of the project are already underway, including the formation of a framework in which more than 300 researchers from both within and outside of the implementing institutions will participate in the	the relationship between the project and existing large—scale projects at the implementing institutions and to develop more comprehensive and actionable plans to handle budgetary and personnel issues.

4

Essential to control systematic uncertainties

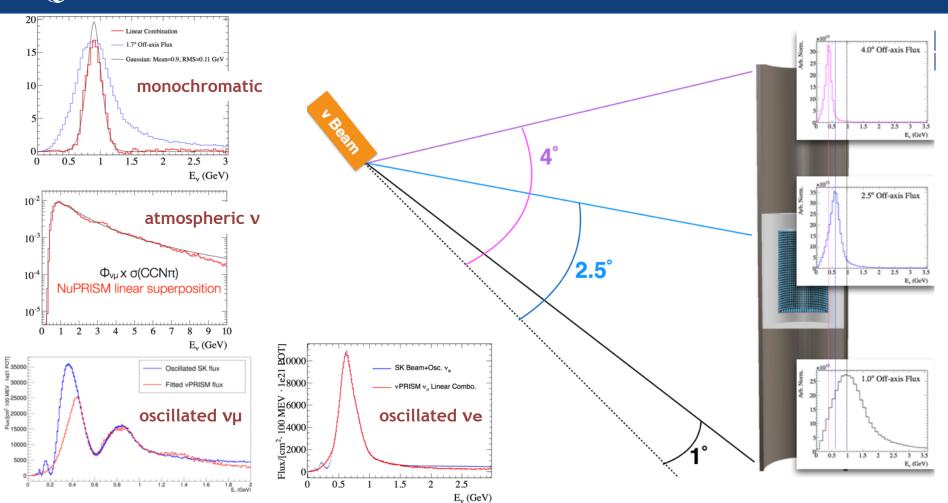
- CP sensitivity is limited by systematics
 - Improving systematics has big impact on sensitivity
 - Systematic error does not behave like gaussian
 - 5σ tail in systematic uncertainty assuming gaussian tail is not correct

HK Sensitivity for $\delta cp = -\pi/2$ (maximal CP viol.)

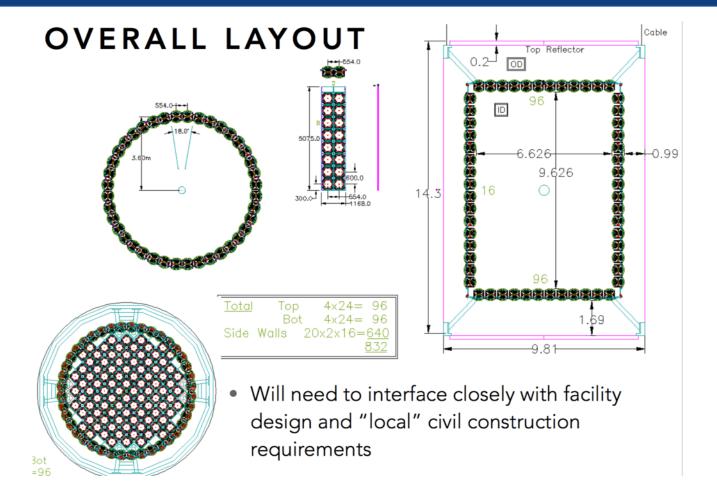

Canadian initiatives on systematic uncertainties

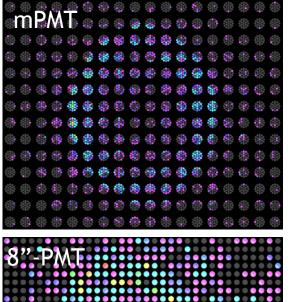
	% Errors on Predicted Event Rates, Osc. Parameter Set A							
	1R μ-	Like	1R e-Like					
Error Source	FHC	RHC	FHC	RHC	FHC CC1π	FHC/RHC		
SK Detector	1.86	1.51	3.03	4.22	16.69	1.60		
SK FSI+SI+PN	2.20	1.98	3.01	2.31	11.43	1.57		
ND280 const. flux & xsec	3.22	2.72	3.22	2.88	4.05	2.50		
$\sigma(v_e)/\sigma(v_\mu), \ \sigma(v_e)/\sigma(v_\mu)$	0.00	0.00	2.63	1.46	2.62	3.03		
ΝC1γ	0.00	0.00	1.08	2.59	0.33	1.49		
NC Other	0.25	0.25	0.14	0.33	0.98	0.18		
Total Systematic Error	4.40	3.76	6.10	6.51	20.94	4.77		

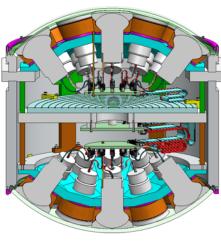
- Neutrino cross sections
 - IWCD (E61/NuPRISM)
 - v_e cross section
 - NC and beam v_e
 - Nuclear effect
 - Neutron tagging


- Detection efficiency (calibration)
 - E61 beam test @ Fermilab
 - Bottom-up calibration
- Neutrino flux
 - Hadron production experiment @ Fermilab
 - hybrid emulsion spectrometer

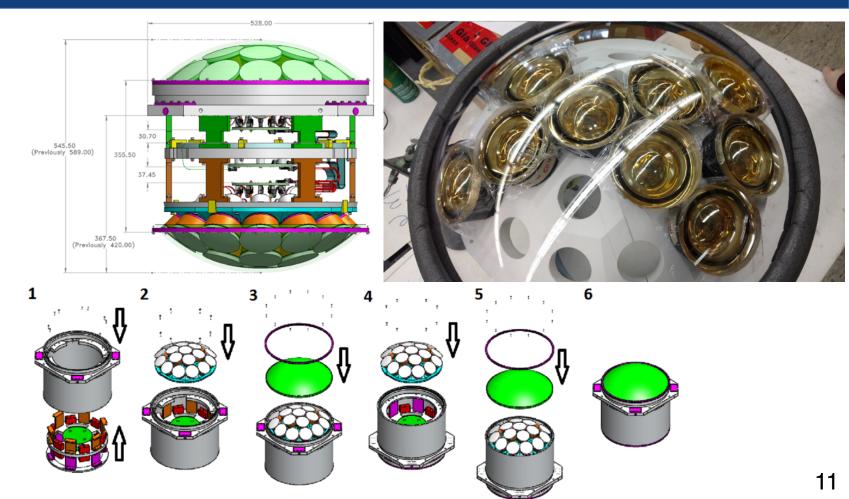
Intermediate Water Cherenkov Detector (E61/NUPRISM)




NUPRISM linear combination


Mechanical design of the overall layout of NuPRISM

multi-PMT



- multi-PMT (mPMT)
 - 19 of 3" PMT's in a vessel
 - economical 3" PMT's
- mPMT for IWCD(NuPRISM)
 - finer granularity for small WC
 - better than 8"
- mPMT for HyperK
 - multi-ring reconstruction
 - CC1π, mass hierarchy
 - angular sensitivity
 - accidental reduction for low E?
 - provide calibration standard

Design and prototyping of mPMT

Timelines

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
T2K/T2K-II/SK										
E61 beam test										
E61 facility										
E61 detector										
HK mPMT										
Hadron prod.										
	design construction		opera	ation						