Novel superconducting magnet technologies towards the applications in future high-intensity accelerators

Toru Ogitsu KEK, Cryogenics Science Center

KEK Cryogenics Center

• Support KEK projects by Superconducting Technologies and Cryogenics Engineering

Research Members Head: Toru Ogitsu Professor: Tatsushi Nakamoto **Associate Professor:** Nobuhiro Kimura Ken-ichi Sasaki Takayuki Tomaru Lecturer: Michinaka Sugano Masami lio **Posdoc:** Hiroshi Yamaguchi Kento Suzuki Student: Mukesh Dhakarwal Wanison Ramnarong

Major works

• LHC Insertion Quadrupole MQXA

• J-PARC Neutrino Beam Line SC Magnet System

On going projects at J-PARC: MUSE, COMET, g-2/EDM, etc

SC solenoid for MUSE

- Just constructed
 - MUSE MUON beam line solenoids
 - SC magnet under high radiation environment
- Under construction
 - COMET
 - SC magnet under high radiation environment with high field ~6 T
 - Radiation resistant materials
- Under Development
 - g-2/EDM
 - High accuracy superconducting solenoid

g-2/EDM

On going project: KAGRA

- Under construction: since 2010
 - Very low vibration cryogenics

Pure Al heat conduction technology Spin out: ILC Q-Mag

Cryogenic Suspension System

On going project: **HL-LHC D1 magnet**

- **Beam Separation dipole** lacksquare
 - Large aperture: 150mm
 - High Field: 5.57 T beam, 6.56 T peak
 - High radiation: 25 MGy

16

14

10

0 0

5

10

Quench current (kA)

Radiation resistant GFRP

R&D for Future

- Radiation Resistant Superconducting Magnet
 - HTS based

R&D of Ceramic Coating

- SC Accelerator Magnet with Advanced Conductor
 - High Jc Nb₃Sn conductor
 - CERN collaboration
 - HTS accelerator magnet
 - Company & University collaboration
 - High-efficiency superconducting magnet

Further Future

- High Field(>10 T) Magnets for High Radiation Environments (~100 MGy)
 - High field magnets for future hadron collider (IR, etc)
 - High field solenoid for neutrino super beam

Multinational Lab

Promote R&D for Radiation Resistance Superconducting Magnets with Advanced Symper **Drs**

- KEI 🌘 P)
- TRIUMF (LA)

• CERN (CH): A. Ballarino MgB₂ Transmission Line

- Robinson Research Institute Victoria University of Wellington (NZ) =1200.0 A (Jm⁻¹cycle⁻
- Kyoto Univ. (JP)

