# Accelerator for BNCT

2017.12.14 KEK-TRIUMF SCIENTIFIC SYMPOSIUM KEK ACC. LAB. TAKASHI SUGIMURA

#### Preface

- I would like to introduce a compact accelerator for cancer therapy.
- It's a prototype accelerator to validate our method of therapy.
- The accelerator has been developed by the collaboration with

University of Tsukuba, KEK, the Ibaraki prefectural government, Hokkaido University, JAEA, MHI, NAT, ATOX, COSYLAB, Toshiba.

# Contents

#### Preface

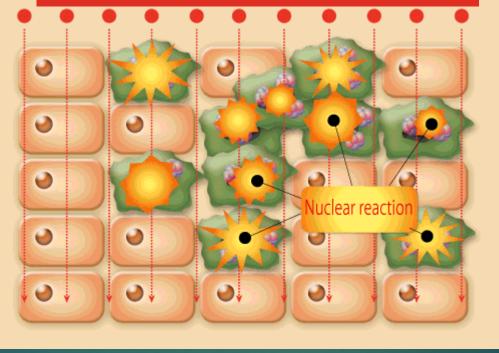
- What is BNCT
- Requirements for accelerator
- Key points of iBNCT project 1,2,3,4
- What has achieved in iBNCT
- Summary

#### What is "BNCT"?

#### What is "BNCT"?

"BNCT stands for "Boron Neutron Capture Therapy".

# <sup>10</sup>B Drug delivery to Cancer cells

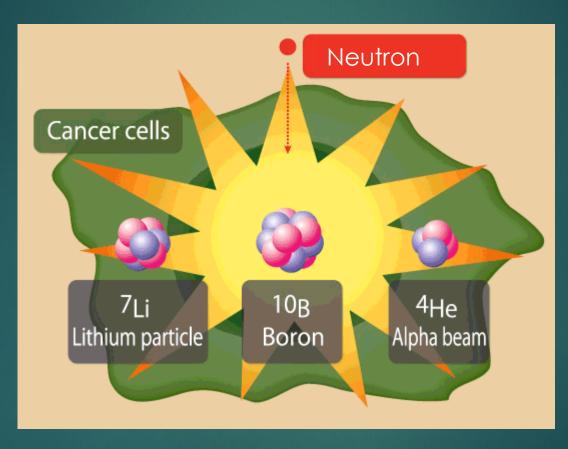



A boron-containing drug that selectively accumulates in cancer cells is delivered in advance.

figure from http://bnct.kek.jp/eng/mechanism.html

### Irradiation

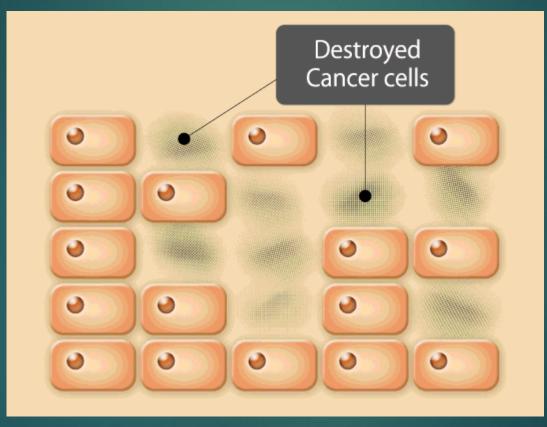
Epithermal Neutron beam from an accelerator or a reactor




Reaction cross section of <sup>10</sup>B (n, a) is exceptionally higher, so reaction selectively takes place in cancer cell.

figures from http://bnct.kek.jp/eng/mechanism.html

#### Reaction: <sup>10</sup>B + $n_{th} \rightarrow {}^{4}\text{He} + {}^{7}\text{Li} + 2.3 \frac{1}{1}\text{MeV}$


Emitted alpha and lithium particles destroy the cancer cells.



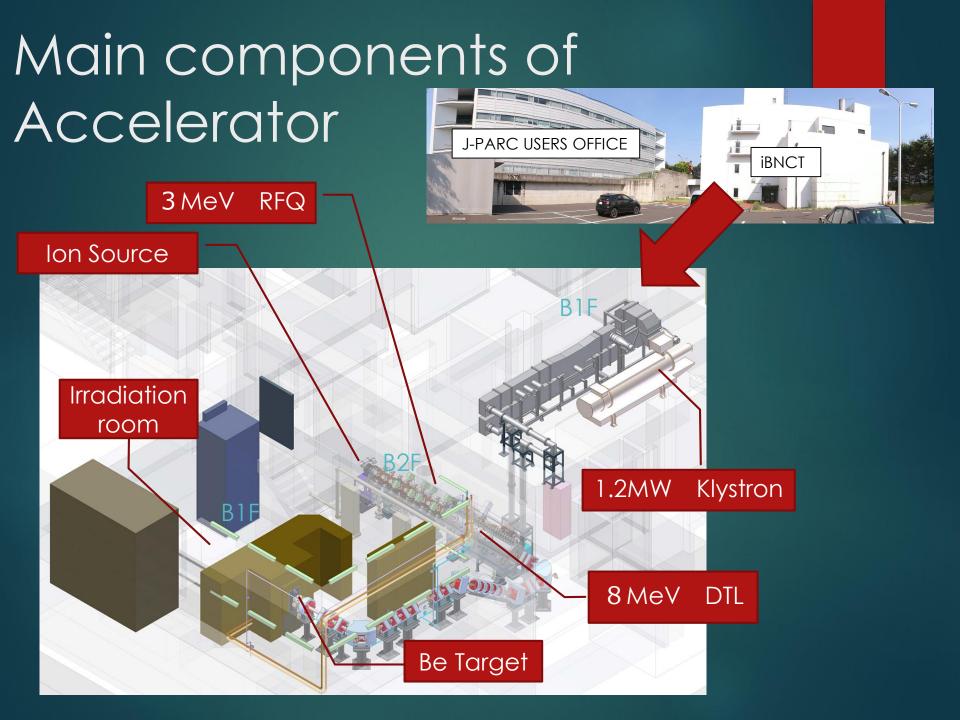
#### figure from http://bnct.kek.jp/eng/mechanism.html

#### Cell-level treatment

They only travel a distance of one cell width about 10  $\mu m$  and don't affect on normal cells



#### figure from http://bnct.kek.jp/eng/mechanism.html


Requirements for accelerator from medical side

epithermal neutron flux : 1 x 10<sup>9</sup> neutron/cm<sup>2</sup>/sec From recent measurement, proton beam of 2 mA in average will be sufficient. ► Of course, medical side call for much more. No accelerator fault is acceptable under medical treatment about 1 hour. Stable operation is essential.

#### Key points of iBNCT 1

We call our BNCT project as "iBNCT". "i" stands for <u>I</u>baraki prefecture, where KEK established.

Hospital-use equipment.
compact footprint about 100 m<sup>2</sup>.



#### Key points of iBNCT 2

The RF design of the RFQ and the DTL is based on the J-PARC Linac to reduce development work.

note: The duty factor of the iBNCT is much higher (20%) compared with that of J-PARC (1.25%).

#### Beam specification

|                      | iBNCT<br>Goal           | iBNCT Present | J-PARC                |
|----------------------|-------------------------|---------------|-----------------------|
| particle             | proton                  | $\leftarrow$  | H-                    |
| Beam energy          | 8 MeV                   | $\leftarrow$  | 400 MeV               |
| Peak beam current    | 50 mA                   | 25 mA         | 50 mA                 |
| Average beam current | 10 mA                   | 1.2 mA        | 0.63 mA               |
| Beam pulse width     | ∼ <mark>925 µsec</mark> | $\leftarrow$  | <mark>500 µsec</mark> |
| Max repetition       | <mark>∼ 200 Hz</mark>   | 50,67,75 Hz   | <mark>25 Hz</mark>    |
| Duty factor          | <mark>20%</mark>        | 5~7.5%        | <mark>1.25%</mark>    |

# RFQ (iBNCT)

#### fabricated by milling and brazing



|                              | RFQ     |
|------------------------------|---------|
| Length(m)                    | 3.1     |
| Maximum Peak current<br>(mA) | 50 (20) |
| Frequency (MHz)              | 324     |
| Injection Energy (keV)       | 50      |
| Output energy (MeV)          | 3.0     |
| Peak beam loading (kW)       | 150(60) |
| Peak wall loss (kW)          | 340     |
| Q <sub>0</sub>               | 9400    |

# DTL (iBNCT)

|                        | DTL       |
|------------------------|-----------|
| Length(m)              | 3.0       |
| Max. Peak current (mA) | 50        |
| Frequency (MHz)        | 324       |
| Injection Energy (MeV) | 3.0       |
| Output energy (MeV)    | 8.0       |
| Q-Magnet type          | permanent |
| Peak beam loading (kW) | 250(100)  |
| Peak wall loss (kW)    | 320       |
| Q <sub>0</sub>         | 44000     |



#### fabricated by copper plating on a steel tank

### J-PARC RFQ II & DTL



Power supply cable for electromagnet DTQ

water flow meter for Drift Tube(DT)

The length of J-PARC DTL section is 27 m and the extraction energy is 50 MeV. iBNCT DTL is based on the first 3 m.



# Key points of iBNCT 3

come along with Key points 1

One klystron feeds both of an RFQ and a DTL to reduce cost and foot-print.

Allowing a large temperature difference (AT) up to 10 °C between inlet and outlet cooling water of RF cavities, cooling water system shrinks in size.

► It's a big challenge.

# Dynamic water temperature Control Average temperature keeps constant.



### Key points of iBNCT4

There are some choices for an accelerator based BNCT.

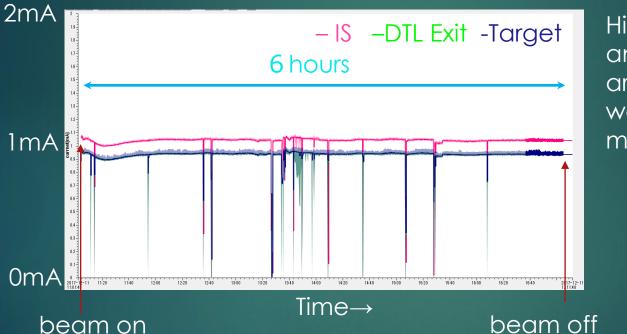
Type: Linac, cyclotron, electrostatic accelerator,,,

Energy: 8 MeV, 30 MeV,,,,

Target material: solid Li, liquid Li, solid Be ,,,

iBNCT selected 8MeV linac with Be target.

Low residual activity is essential in a hospital.


These selections characterize iBNCT.

### What has achieved in iBNCT

beam current:

Beam current

1 mA on target @50Hz, 6hours



There are some short beam stops.

High beam current and stable operation are opposite concepts. we need to find some meeting point.

Neutron flux: 5.3 x 10<sup>8</sup> neutron/cm<sup>2</sup>/sec @0.95 mA by preliminary measurement

# Summary

- Introduced BNCT
- iBNCT accelerator:
  - Small foot print suitable for hospital-use.
  - RF Cavity design is based on J-PARC LINAC.
  - Feeding two different cavities from one klystron.
  - ► Large △T of cooling water for cavities to shrink cooling system in size.
  - 8MeV linac with Be target.
- iBNCT achieved average current of 1 mA and thermal neutron flux of 5.3 x 10<sup>8</sup> neutron/cm<sup>2</sup>/sec .
- We are still in a half of the way there.

#### Thank you for your attention.