Neutron Electric Dipole Moment Experiment at TRIUMF

The TUCAN Collaboration

<u>S. Ahmed</u>^{3,4}, <u>E. Altiere</u>², <u>T. Andalib</u>^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, <u>M. Das</u>^{3,4}, C. Davis⁵, B. Franke⁵,
M. Gericke⁴, <u>S. Hansen-Romu</u>^{3,4}, K. Hatanaka⁶, T. Hayamizu², B. Jamieson³, D. Jones², K. Katsika⁵,
S. Kawasaki¹, T. Kikawa^{5,6,1}, M. Kitaguchi¹⁰, <u>W. Klassen</u>^{3,4}, A. Konaka^{5,8}, E. Korkmaz⁷, <u>M. Lang</u>³,
T. Lindner^{5,3}, K. Madison², Y. Makida¹, J. Mammei⁴, R. Mammei^{3,5}, J. Martin³, R. Matsumiya⁶, <u>E. Miller</u>²,
K. Mishima¹, T. Momose², T. Okamura¹, S. Page⁴, R. Picker^{5,9}, E. Pierre^{6,5}, W. Ramsay⁵, <u>L. Rebenitsch</u>^{3,4},
H. Shimizu¹⁰, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada
¹⁰Nagoya University, Nagoya, Japan

Spokespeople: J. Martin (Canada), K. Hatanaka (Japan)

Physics of Neutron Electric Dipole Moment

- Search for new sources of CP violation beyond the standard model.
- Motivated by:
 - Strong CP problem / Peccei-Quinn, axions
 - SUSY CP problem / new TeV-scale physics for electroweak baryogenesis
 - Other new physics scenarios, e.g. color breaking baryogenesis (G. White, et al.)
- Ancillary measurements:

- Precision clock comparison (axionlike particles, Lorentz violation, background cosmic field, ...)
- Time-dependent EDM's (axionlike dark matter)

Neutron EDM – world status

- Free neutrons: d_n < 3.0 x 10⁻²⁶ e-cm (ILL-Sussex-RAL; Baker et al. 2006, Afach et al. 2016 revised)
- Many groups pursuing < 10⁻²⁷ e-cm measurement (PSI, ILL-Gatchina, ILL-Munich, SNS, TRIUMF, ...)
- Recent Hg-EDM implies: d_n < 1.6 x 10⁻²⁶ e-cm (Graner et al. 2016) Schiff screening
- Expectation that PSI group will beat this limit by some factor (<2) within next few years.
- Many orders of magnitude before standard model background (CKM) $d_n < 10^{-31}$ e-cm is reached.

Neutron EDMs worldwide

Ultracold Neutrons (UCN)

- Neutrons that are moving so slowly that they bounce off surfaces and can be bottled.
 - *v* < 8 m/s = 30 km/h
 - *T* < 4 mK
 - K.E. < 300 neV
- Interactions:
 - Gravity:

 - Strong:
 - Weak: $\tau_{p} = 886 \text{ s} = 15 \text{ mins}.$

 $V = V_{eff} V_{eff} < 335 \text{ neV}$

Two leading superthermal UCN source technologies

- Superfluid ⁴He
 - Nearly ideal two-state system
 - Small losses
 - Challenges are T < 0.8 K and extraction

- Solid ortho-D₂
 - Many more scattering states, high production
 - Large losses
 - Challenges are short UCN lifetime and crystal quality

Survey of UCN Sources Worldwide

Place		Neutrons	UCN converter	Status
ILL		Reactor, CN	Turbine	Running
J-PARC		Spallation	Doppler shifter	Running
ILL SUN-2		Reactor, CN	Superfluid He	Running
ILL SuperSUN		Reactor, CN	Superfluid He	Future
RCNP/KEK/TRIUMF		Spallation	Superfluid He	Installing/Future
Gatchina WWR-M		Reactor	Superfluid He	Future
LANL		Spallation	Solid D2	Running/Upgrading
Mainz		Reactor	Solid D2	Running
PSI		Spallation	Solid D2	Running
NSCU Pulstar		Reactor	Solid D2	Installing
FRM-II		Reactor	Solid D2	Future
KEK-TRIUMF combination of spallation target and superfluid helium is unique.				

Upgrade schedule is competitive with other leading sources of UCN.

UCN Facility at TRIUMF - Overview

Facility as of today – shielding blocks removed.

Vertical superfluid He cryostat

Key results from KEK-RCNP research:

- 26 UCN/cm³ @ 1 uA proton current
- Spectrum < 90 neV
 - Y. Masuda et al., PRL (2012)
 - R. Matsumiya, PhD thesis

Possible improvements:

- Increased beam power, improved targeting, room temp moderators.
- Material potential is 18 neV, use near-horizontal extraction
- Cold moderator upgrade.
- Improved cooling power (bigger pumps, conductance).
- Thinner Al or Be walls for bottle (beta and gamma heating)

Surrounding graphite, steel not shown

Recent progress in Canada (TRIUMF)

- First beam delivery to target Nov. 22, 2016
- Installation of vertical UCN source Jan.-Mar., 2017
- sub-1K cold test *in situ* April 2017
- Fall 2017 problems with cryostat operations.
- Nov. 13, 2017 First UCN production in Canada!
- Nov-Dec 2017 comprehensive UCN production and transport experiments. Cryogenic He-II characterization. Focused on future UCN source design.
- Continued nEDM R&D at Universities
- Offer made to Project Manager

First UCN at TRIUMF

kek.ip

TRIUMFで超冷却中性子(UCN)の
生成に初めて成功 KEK、
RCNP、TRIUMF、ウィニペグ大
学の共同研究で

NOVEMBER 21, 2017

MAKIO

所要時間:約3分

TRIUMF's (ultra)cool experiment fires up triumf.ca

20 November 2017

f 🗾 in 📴 🖂

New record for most UCN produced with this source: 325,000 UCN for 10 uA proton beam current, 60 s irradiation. See parallel session (R. Picker).

Recent progress in Japan (KEK)

- New UCN source design from UCN and cryogenic perspectives
- Superfluid helium as a cryofluid, Kapitza conductances and heat exchanger design for 3He refrigerator
- Proposal for new experiments to measure Kapitza conductances and superfluid helium thermal conductance at KEK (in cooperation with Hosoyama-san's group)
- Moderator design, new idea for diamond nanoparticles as neutron reflector, studies of VCN source/moderator characterization line.
- Building collaboration in Japan, including Nagoya group.

- New 3rd-gen UCN source to be built in Japan
- New LD₂ moderator to be built in Canada

Plan for 2020

• nEDM (Phase-2) experiment, 600 UCN/cm³ delivered to two EDM cells.

Phase 2 nEDM Experiment

Funding Status

- Project is fully funded in Canada. (\$13.6M including partner contributions secured/expected, \$1.6M contributed by TRIUMF in 2015-2020)
- Need Japan commitment/plan for next-generation UCN source (and nEDM experiment).
- Need expertise of key KEK collaborators including UCN source leader (S. Kawasaki, T. Okamura, Y. Makida, K. Mishima), and Nagoya, RCNP Osaka groups.

Issues to be discussed in parallel session

- Project management (identified as issue in recent review in Tokyo)
- Manpower issues in Japan, how to engage new collaborators in Japan.
- Commitment of collaboration to running experiment at TRIUMF vs. designing future UCN source.
- What kind of development do we have to do before ready to build new UCN source?
- What is a reasonable schedule to complete R&D, CDR, to Gate 2 level? Gate 2 = ready to fund/proceed to technical design.
- Milestones/conditions leading to Gate 2.

Agenda of Parallel Session

- R&D for Cold and Ultracold Neutrons
- Recent Results and Progress at TRIUMF
- New source design, Progress at KEK
- Cryogenic Design Studies for UCN Project T. Okamura (KEK)
- Neutronics for new source
- Discussion
 - S. Kawasaki (KEK), J. Martin (Winnipeg), K. Hatanaka (RCNP)

M. Kitaguchi (Nagoya)

R. Picker (TRIUMF)

S. Kawasaki (KEK)

T. Kikawa (TRIUMF)

Summary

- High science impact.
- Good progress in past years, resulting in completion of proton beamline at TRIUMF and a key milestone of UCN production.
- Need to take project to next stage with new UCN source and EDM experimental apparatus.