Measurements of the TUCAN vertical UCN source heat load response and UCN polarization

Manitoba Subatomic Physics Symposium 2021
University of Manitoba
February 5, 2021

Sean Hansen-Romu
Supervisor: Dr. Blair Jamieson TUCAN Collaboration

THE UNIVERSITY OF WINNIPEG

University of Manitoba

TUCAN

The TUCAN collaboration，or
TRIUMF Ultra Cold Advanced Neutron source collaboration，is a Canadian－Japanese collaboration

THE UNIVERSITY OF WINNIPEG

名古屋大学 NAGOYA UNIVERSITY

UNIVERSITY OF
NORTHERN BRITISH COLUMBIA

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Motivation

Hamiltonian \widehat{H} describes equations of motion of a neutron

$$
\hat{H} \neq \mathcal{P}(\hat{H})=-\vec{d} \cdot(-\vec{E})-\vec{\mu} \cdot \vec{B}
$$

$$
\begin{gathered}
\widehat{H}=-d \vec{E} \cdot \vec{S}-\mu \vec{B} \cdot \vec{S} \\
=\hbar \omega \longleftarrow \text { General solution } \\
\hbar \omega_{1 \upharpoonright}=2 \mu B-2 d E \\
\hbar \omega_{1 \downarrow}=2 \mu B-2 d E
\end{gathered}
$$

Trying to measure this

$$
\Delta \omega=\omega_{1 \upharpoonright}-\omega_{1 \downarrow}
$$

$$
d=\frac{\hbar \Delta \omega}{4 E}
$$

$\hat{H} \neq \mathcal{T}(\hat{H})=-(-\vec{d}) \cdot \vec{E}-(-\vec{\mu}) \cdot(-\vec{B})$
Limits by Abel et al.(2020) is $\left|d_{n}\right|<1.8 \times 10^{-26} \mathrm{e} \mathrm{cm} @$ PSI, Switzerland

nEMD Experiment

- UCN Production
- Polarization

$$
\sigma_{d} \cong \frac{\hbar}{2 \alpha T E \sqrt{N}}
$$

- Low field NMR sequence
- Detection of final polarization state

neutron - super fluid Helium interaction

- The neutrons can exchange energy and create phonon excitations in the superfluid helium

Ultracold Neutron Production

Cryostat Model

To test model we can solve numerically and predict the dimensions of the channel and compare to real life

Heater Tests

Heating with a coil to mimic beam heating during irradiation from proton beam

Conclusions

The model is able to produce slow temperature rise The dimensions of the hole qualitatively close

nEMD Experiment

- UCN Production
- Polarization
- Low field NMR sequence

Statistical uncertainty of d

$$
\sigma_{d} \cong \frac{\hbar}{2 \alpha T E \sqrt{N}}
$$

- Detection of final polarization state

$$
\alpha=\frac{n_{\uparrow}-n_{\downarrow}}{n_{\uparrow}+n_{\downarrow}}
$$

Polarizing Foils and SCM

$$
V_{F, e f f}=V_{F, F e} \pm 60 \mathrm{neV} / \mathrm{T} \cdot \mathrm{~B}
$$

Magnetic field changes potential due to spins
Thin iron foils saturate magnetization

- Have internal field 2 T

UCN K. E.

Super Conducting Magnet provides large enough B field to polarize

Analyzer and Spin Flipper Experiment

UCN from

$\frac{0}{\frac{2}{10}}$ analyzer

$f_{1}=\frac{1}{2}\left(\frac{N_{11}-N_{10}}{N_{00}-N_{01}}+1\right) \quad f_{1}$ is the spin flipping efficiency of spin flipper 1

Polarizing foil $p_{A}=60 \pm 2 \%$
Spin flipper efficiency is $f_{1,2}=97 \pm 3 \%$
n denotes the power state of the first spin flipper, m the second spin flipper, with $n, m=0$ (off) or 1 (on).

Monte Carlo Simulations

A UCN Monte Carlo is

 used to get the strict internal polarization power of the foilsP
Comparison the observable polarization power

$$
p_{a}=\sqrt{\frac{\left(N_{11}-N_{10}\right)^{2}}{N_{11} N_{00}-N_{01}^{2}}}
$$

$p_{A} \quad$ Foil Depolarization versus Polarization Power

?

Question time
POLARIZATION MEASUREMENT OF UCN

Ramsey Sequence for nEDM measurement

$$
P(\uparrow ; \downarrow)=P\left(\omega_{R F}, T, B_{o}, B_{1}\right)
$$

1.
2.

"Spin up" neutron.
90° spin-flib
$\frac{\pi}{2}$-pulse

Frequency Detection

EDM Measurement is a frequency difference measurement between polarized atoms in E-field

$$
\widehat{H}=-d \frac{\vec{J}}{J} \cdot \vec{E}-\mu \frac{\vec{J}}{J} \cdot \vec{B}
$$

- Zeeman levels due to μ in B-field
- Shift due to d in E-field

$$
\begin{gathered}
\hbar v_{\|}-\hbar v_{\|}=4 d E \\
\hbar \Delta v=4 d E
\end{gathered}
$$

$$
d_{n}=\frac{\hbar \Delta v}{4 E} \quad \frac{B=0}{E=0} \quad h \nu_{\|}=-2\left(\mu_{n} B+d_{n} E\right)
$$

- Change in frequency from E-field is d the measurements

Error from the experiment is given by $\sigma_{n} \cong \frac{\hbar}{2 \alpha T E \sqrt{N}}$

