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The Standard Model is just a sliver

Dark Energy
69%

Dark Matter
26%

Visible Matter
5%

Standard Model

} Something else

Search for BSM physics

I Phase space large for simple, infinite for complex models

I Two approaches: Cover large area – or look at anomalies
Beryllium/Helium anomaly, gµ − 2, proton charge radius
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8Be is special

Many images from arXiv:1707.09749
8Be is special: two narrow, highly energetic states which can decay
to ground state via E/M
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Decay modes of 8Be(18.15)

Hadronic, electromagnetic and through internal pair conversion
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The Atomki experiment

ATOMKI PAIR
SPECTROMETER

θ 

1.04 MeV proton beam on 7Li to 8Be(18.15) + γ. Followed by
decay. Looked at e± pairs from internal conversion.
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The Beryllium anomaly

(from: arXiv:1707.09749v1, modified from PRL 116 042501 (2016))

I Feng et al. (PRL 117, 071803 (2016)): Proto-phobic force to
evade current limits
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New results on 3H(p, γ)4He arXiv:1910.10459 [nucl-ex]

I Updated experimental setup: reduced background

I Bump appears at different angle, but same mass:
4He : 17.01± 0.16 MeV 8Be : 16.84± 0.16 MeV
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Why believe it?

I This model has χ2/d .o.f . of 1.07, significance of 6.8σ

I Bump, not last bin effect

I Remeasured with new detector: A J Krasznahorkay et al 2018
J. Phys.: Conf. Ser.1056 012028

I Compatible masses in 8Be and 4He, and compatible couplings
(Feng et al. arXiv:2006.01151)

I Non-linearities in Isotope shifts (King-plots), observed (I.
Counts et al., arXiv:2004.11383)

I Hard to distinguish from higher order SM effects.
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Why not believe it?

I DM boson interpretation is proto-phobic to evade NA48/2
limits

I Actually:
εp
εn

coupling below ±8%. Z 0 is ∼ 7%

I Recently, alternative processes were proposed

I arXiv:2003.05722v3 Hard γ + γ process
I arXiv:2005.10643 Anomalous Internal Pair creation
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How can we measure it at an electron accelerator?
I This particle can be produced via Bremsstrahlung,

predominantly ISR off the electron.

I Measure

e−Ta→ e−TaX followed by X → (e−e+)

I Irreducible background:

e−Ta→ e−Ta γ? → e−Ta e+e−

I two spectrometers,
measure e+ and e− in coincidence

I Best kinematics:

I highest production rate if X takes all electron energy.
Rise in CS beats all.

I with limited and same out-of-plane acceptance,
symmetric angle optimal.
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Background

I Main background is NOT the irreducible one. Random
coincidences between

I radiative elastic electrons
I positrons from (virtual) photon pair-production where e−

is missed

I Can optimize by moving electron arm backward.
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Possible setup

I 45 MeV beam, 150 µA on 10 µm tantalum foil −→about 52
inv. nb/s

I Two spectrometers

I ±2◦ in-plane, ±5◦ out-of-plane
I Positron spectrometer at 16◦, 28 MeV
I Electron spectrometer at 33.5◦, 15 MeV
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Spectrometer design parameters

Kinematic var. Acc. Inv. mass res. est. res. on focal plane Error

in-plane angle ±2◦ 22 keV
mrad

1mm/7cm→1 mrad 22 keV

out-of-plane angle ±5◦ 5 keV
mrad

1.5◦ 133 keV

momentum ±20% 85 keV
%

1mm/30cm→0.13% 11 keV

I Spectrometer can measure two quantities on first plane
(position), but has additional multiple scattering for third
quantity (angle)

I Simple dipole spectrometer, dispersive direction out-of-plane
→ out-of-plane angle is measured worst.

I Sum for two spectrometers: 191 keV , assumed 250 keV

I This does not include multiple scattering in the target!

I Have to do full simulation when realistic magnetic field is
calculated.
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Counting rates: X signal
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Background rates

QED irreducible: 55 Hz coincidences,

... but 120 kHz e+ singles
Initial state radiation e−p: 6 MHz
−→ Random coincidence rate 550 Hz

(at 1.3 GHz bunch rate)
This is the minimum trigger rate and sets the sensitivity.
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Counting rates: Backgrounds
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Dominated by accidental background

I Random coincidences dominate

I Scaling with instantaneous luminosity:

I Signal S ∼ L
I QED background Q ∼ L
I Accidental background A ∼ L2

I Sensitivity S√
Q+A

∝ 1 for A� Q

I Sensitivity almost independent of luminosity. Scale is set by
bunch-clock / time resolution

I Out-of-time ”coincidences” give accurate measure of
acceptance including efficiency.
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Reach at 45 MeV
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Target

Nominal: 10um tantalum foil, 150uA current.
(There is a play of about factor 3 in the product)
Eloss

I About 3.4W into target as heat

I 1800K for 1 mm beam radius

I Total loss 17W

I Probably find with the stationary target

I Will spin it anyway

Multiple scattering

I θms = 15mrad

I This might be a problem
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Trigger detectors

I Scintillator Hodoscope, 10 segments/spectrometer

I Needs timing resolution of < 500 ps

I MUSE beam hodoscope: 2 mm thick scintillator, SiPM
readout: < 100 ps

I Tested up to 8mm wide, 15 cm long.
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Trigger electronics

I Coincidence window size ˜ 1ns

I Can be worse than offline analysis, but increases deadtime

I Do we need position dependent time correction?

I Probably yes: I estimate up to 2 ns path length
differences per side
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Run at smaller energies?

36



DL at 34 MeV?

I MadGraph fails at these energies!

I New generator (from Mainz: Beranek et al.
10.1103/PhysRevD.88.015032)

I Some tension with MadGraph. Have to understand this!

I Positron spectrometer at 21.75◦, 19.25 MeV

I Electron spectrometer at 47◦, 11.75 MeV

I Did not check resolutions – assumed the same.

I Random background 35 times irreducible background!
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Reach at 34 MeV
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Should we run at 34 MeV?

I Achieving full coverage probably difficult.

I Ideal tool to commission spectrometers.

I Crucial to identify, combat backgrounds

I Measure to refine model/reach predictions:

I QED irreducible backgound
I Single rates
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Spectrometers

Focal Plane
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3D rendering

BEAM DIRECTION

TARGET CHAMBER

LEAD SHIELDING
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Possible locations

I Minimal modification

I Could use exisiting beam
dump

I Cleaner environment:
Beam dump far away

I Might be able to recover
beam energy
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Beam requirements

I Highest possible bunch rate (sets coincidence time)

I Beamspot stable or monitored (needs more simulation to
qualify)

I Energy stability less? crucial:

I X mass reconstructed from spectrometers
I Absolute energy only needed for spectrometer calibration
I 1% energy offset gives 40 keV additional width, but shift

of 0.4MeV!
I Exploit inelastic lines for better calib?
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Open projects

I Simulations of backgrounds, rates

I Simulation of the full spectrometer response

I Procurement / construction of trigger scintillators

I Procurement / construction of trigger logic
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Projected costs (material only)

Item Cost

Spectrometers $165k

Target chamber $16k

GEMs $50k

Scintillator $10k

Electronics $55k

Total $296k
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Future projects? Measure proton GM and magnetic radius
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