Interaction Region Synchrotron Radiation and Vacuum

Marcy Stutzman, JLab Staff Scientist
Charles Hetzel, BNL Vacuum Group Leader

TRIUMF 2021
EIC Accelerator Partnership Workshop

October 27, 2021
Electron Storage Ring

- Circumference [m]: 3833.94
- Beam energy [GeV]: 5, 10, 18
- Max beam current [A]: 2.5
- RMS bunch length [mm]: ~7
- Max power absorbed [MW]: ~10
- Number of cells: 96
Interaction Region Requirements

Accelerator
- Clearance for beam and tails
- Minimize wake fields and longitudinal impedance
- Thermal management
- Magnets & Cryostats
- Good **vacuum** to minimize beam broadening

Detector
- Low z materials (Be, Al)
- Detectors close to IP
- Detector temperature limits
- Low energetic photon flux
- Accommodate ancillary detectors
- Mobile for maintenance
- Synchrotron radiation management
- Good **vacuum** to minimize detector background

Goal: Average dynamic pressure $< 1 \times 10^{-9}$ mbar
Two Detector Background Sources from Synchrotron Radiation

• Synchrotron Radiation -> detector hits
 • Low energy (keV) photons
 • Photon or secondary particles detected
 • ~2-5 μm Gold coating mitigates

• Synchrotron Radiation induces gas desorption -> beam/gas interaction background
 • Hadron beam on residual gas “target”
 • High energy particles from nuclear scattering
 • Hard to shield, must reduce
SynRad+ modeling software

Input
- 3D model of beampipe
- Beam emittance, current
- Magnet locations and fields

Output
- Synchrotron Radiation
 - Position
 - Flux
 - Energy
 - Direction
- Input for Molflow+ dynamic vacuum modeling
Synchrotron Radiation Mitigation

- Final photon absorber configuration
 - Horizontal plane only
 - Annular configuration
 - Length, diameter, position

- Beamline dimensions
 - Wider beam pipe for
 - 13.5σ clearance in x
 - 23σ clearance in y

- Beamline profile
 - Sawtooth/ridge texture for photon absorption
Interface between Synrad and Geant4

- SynRad+ simulations can give photon
 - Energy
 - Position & direction
 - Flux related current
- Iterate with design mods
 - In process: 0.5 m detector shift results
- Provide SynRad+ photon distributions to collaborations
 - Input for GEANT4 and Fun4All simulations of detector hits

Photon flux incident on vacuum chamber
10 GeV, photons > 10 eV
Interface between Synrad and Geant4

- SynRad+ simulations can give photon
 - Energy
 - Position & direction
 - Flux related current
- Iterate with design mods
 - In process: 0.5 m detector shift results
- Provide SynRad+ photon distributions to collaborations
 - Input for GEANT4 and Fun4All simulations of detector

Photon flux incident on vacuum chamber
10 GeV, Photons > 5 keV
which can penetrate gold
Flux drops by ~1000x
Benchmarking SynRad+ code

- SynRad+ widely used
 - CERN: LEP & LHC
 - Argonne APS Upgrade
 - SuperKEKB positron
 - ESRF
 - PETRA-III
 - ELETTRA
 - CESR
 - NSLS-II
 - SESAME
 - ALBA

Collaboration with M. Sullivan, SLAC
- 2D synchrotron radiation simulation
 - Developed for SLAC B Factory
 - Used for BELLE and SuperKEKB IR
 - Beam Tail profile critical for EIC: Optimizing tail models using SuperKEKB commissioning data

- Comparison with HERA
 - HERA model in SynRad+ complete
 - Future project to compare vacuum predictions

Ref: Kersevan IUVSTA 51st workshop, 2007
Tail simulation details

2D SYNC-BKG (M. Sullivan)
Tails optimized with SuperKEKB data

To approximate EIC tails in SynRad+, add two Gaussian distributions

3D SynRad+ uses Gaussian tails

Tail calculations by C. Montag (July 2021)
lower than either profile in simulations

Ongoing studies of the tail profile effect for detector backgrounds and vacuum levels
IR Beamline Vacuum Challenges

9 m section with no pump ports

Synchrotron radiation liberates gas

Close interface with detectors

- Bakeouts limited due to detectors sensitivity
- Isolation valves for beamline during detector movement interfere with detectors
Vacuum System

Pressure Goal: 1×10^{-9} mbar with beam
- Low hadron beam-gas backgrounds
- Long beam lifetimes
- Detector background vs. pressure under study

Marcy Stutzman Electron-Ion Collider
SynRad+ & Molflow+ for Dynamic Vacuum

Input
• 3D model of beampipe
• Pump locations
• Materials & Outgassing Rates
• SynRad+ flux per facet
 • Photon Stimulated Desorption Rate
 • Depends on material and gas species

Output
• Base Pressure distribution
• Outgassing rate of each facet with synchrotron radiation
 • Pressure vs. Amp-hours during commissioning
All discrete pumps, No NEG coating, no bakeout
• Activation or bake temperature would harm Si detectors
Cryogenic beamline pumping not taken into account thus far
IP-6: Detector Removal for Maintenance
IP-6: Detector Removal for Maintenance

Model from Walt Akers
Detector package removal from beamline for maintenance

Vacuum Concerns
1. Yearly IR beamline vent
2. Gate valves difficult/impossible
 1. Detectors blocked and additional background
 2. Calorimeter must slide off beamline

Need to develop
Venting, pumpdown, conditioning

Ongoing studies
- Recovery after maintenance
- Additional Pump Locations
- Materials Selection, Preparation
- Synchrotron Radiation Mitigation?
Conclusions

• Complex interface between beamline, detectors and magnets
• Synchrotron radiation: SynRad+
 • Benchmarking against 2D codes and operational experience
 • Good integration with detector background modeling
 • Tail distribution still under study
• Dynamic vacuum studies: SynRad+ and Molflow+
 • Dynamic vacuum calculations vs. conditioning time
 • Materials selection and processing for improved conditioning time
 • Downstream effects and cryogenic adsorption still to be considered
• IR Synchrotron Radiation Background working group: bi-weekly
 • Proto-Collaboration detector working groups
 • Accelerator collaborators welcomed

Thanks for your attention. Questions?
marcy@jlab.org