Production and Chemical Separation of No Carrier Added (nca) Lutetium-177.

Lutetium-177 dotatate gained FDA approval for use in certain neuroendocrine tumors, opening the door for research looking at other avenues of radiopharmaceutical use. With a half-life of 6.647 days and average \beta - particle range in soft tissue of ~670 µm, ^{177}Lu has promise for other therapy applications. Another benefit of ^{177}Lu is that it produces low energy gammas (113 keV, 208 keV), suitable for imaging purposes, allowing biodistribution and excretion kinetics to be monitored. Lutetium-177 can be produced as carrier added (ca) and no carrier added (nca) from enriched ^{177}Lu or ^{176}Yb , respectively by two production routes: $^{176}Lu(n,\boxtimes)^{177}Lu$,

 $^{176}Yb(n,\boxtimes)^{177}Yb \rightarrow \beta^{-177}Lu.$

The later requires separation of Lu from the Yb target following irradiation. The ORNL High Flux Isotope Reactor (HFIR) with a max thermal neutron flux of 2.1x1015 n•cm-2 •s-1 (85 MW) is ideally suited to produce high specific activity ^{177}Lu . Separating nca ^{177}Lu is a complex process because it requires separating micro amounts of ^{177}Lu from macro amounts of ^{176}Yb and they are both part of the lanthanide series. The best method of separation will be tested from previous work to come up with a method that will cut down on waste, time, and improve the overall radio-purity of ^{177}Lu .

Funding Agency

Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics, Isotope Program

Email Address

vbautista@tamu.edu

Presentation Type

Poster

Primary author: BAUTISTA, Victor (Texas A&M)

Co-authors: Dr DAME, Ashley (Oak Ridge National Labratory); Dr COPPING, Roy (Oak Ridge National Laboratory)

Presenter: BAUTISTA, Victor (Texas A&M)